English
新闻公告
More
化学进展 DOI: 10.7536/PC121208 前一篇   后一篇

• 综述与评论 •

纳米颗粒与蛋白质分子的相互作用

许志珍1,2, 晏晓敏3, 张杰2,4, 王煜倩2, 唐仕川*2, 钟儒刚*1   

  1. 1. 北京工业大学生命科学与生物工程学院 北京 100124;
    2. 职业安全健康北京市 重点实验室 北京 100054;
    3. 华南师范大学化学与环境学院 广州 510006;
    4. 北京理工大学爆炸与科学技术国家重点实验室 北京 100081
  • 收稿日期:2012-12-01 修回日期:2013-04-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 唐仕川,钟儒刚 E-mail:tsc3496@sina.com;lifesci@bjut.edu.cn
  • 基金资助:

    北京市科学技术研究院2012科技创新工程项目(No.PXM2012_178304_000007);北京市财政项目(No.PXM2012_178304_000011_00015203_FCG);国家自然科学基金项目(No.81172614, 21007081)和北京市博士后工作经费资助

Molecular Interaction of Nanoparticles with Proteins

Xu Zhizhen1,2, Yan Xiaomin3, Zhang Jie2,4, Wang Yuqian2, Tang Shichuan*2, Zhong Rugang*1   

  1. 1. College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China;
    2. Beijing Key Laboratory of Occupational Safety and Health, Beijing 100054, China;
    3. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China;
    4. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received:2012-12-01 Revised:2013-04-01 Online:2013-08-25 Published:2013-06-13

纳米技术的快速发展和广泛应用前景,引起了人们对纳米生物效应和安全性问题的普遍关注。为保证纳米技术的健康持续发展,纳米颗粒与生物体的相互作用以及产生的生物学效应不容忽视。为充分了解纳米颗粒物产生的生物学效应,阐明纳米颗粒如何进入生物体以及与生物体相互作用的分子过程至关重要。在总结国内外相关研究的基础上,本文介绍了纳米颗粒进入机体的主要途径,并系统综述了纳米颗粒与蛋白质分子的相互作用及其表征方法,以及纳米颗粒与蛋白质相互作用对蛋白质结构功能和纳米颗粒生物效应的影响。

The rapid development of nanotechnology offers wide prospects for the application of nanomaterials in different areas of industry, technology and medicine. Meanwhile, the biological effect and safety of nanoparticles have attracted worldwide attention. To ensure the healthy and sustainable development of nanotechnology, the interaction of nanoparticles with organisms and the biological effect produced by nanoparticles can not be neglected.To understand the biological effects of nanoparticles, investigating how the nanoparticles entrance into organisms and the complicated molecular aspects of nano-bio interactions is crucial. The main routes of nanoparticles entering the organisms are introduced. The interaction of nanoparticles with protein, the influencing factors and characterization of the interaction are reviewed in detail. The effects of nano-protein interaction on the structure and function of protein and the biological impact of nanoparticles are summarized. Contents
1 Introduction
2 The main routes of nanoparticles entrance into the body
2.1 The respiratory system
2.2 The skin
2.3 The gastrointestinal system
3 The interaction of nanoparticles with proteins
4 The characterization of the interaction of nanoparticles with proteins
5 The effect of the interaction of nanoparticles with proteins
5.1 The effect on the structure and function of proteins
5.2 The effect on the characteristics and biological effect of nanoparticles
6 Outlook

中图分类号: 

()
[1] 赵宇亮(Zhao Y L), 柴之芳(Chai Z F). 学科发展(Disciplinary Development), 2005, 20: 194-199
[2] Zhu Q, Talton J, Zhang G, Cunningham T, Wang Z, Waters R C, Kirk J, Eppler B, Klinman D M, Sui Y, Gagnon S, Belyakov I M, Mumper R J, Berzofsky J A. Nat. Med., 2012, 18: 1291-1296
[3] Saraceno R, Chiricozzi A, Botti E, Gramiccia T, Pietroleonardo L, Chimenti S, Souto E B. Patenting Nanomedicines. Springer Berlin Heidelberg, 2012. 383-399
[4] The Project on Emerging Nanotechnologies. [2012-12-01]. http: //www. nanotechproject. org/inventories/consumer/analysis_ draft/
[5] 刘元方(Liu Y F), 陈欣欣(Chen X X), 王海芳(Wang H F). 自然杂志(Chinese Journal of Nature), 2011, 33: 192-197
[6] 晏晓敏(Yan X M), 石宝友(Shi B Y), 王东升(Wang D S), 汤鸿霄(Tang H X). 化学进展(Progress in Chemistry), 2008, 20: 422-428
[7] Oberdörster G, Oberdörster E, Oberdörster J. Environ. Health Persp., 2005, 113: 823-839
[8] 李炜(Li W), 赵峰(Zhao F), 陈春英(Chen C Y), 赵宇亮(Zhao Y L). 化学进展(Progress in Chemistry), 2009, 21: 430-435
[9] Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Small, 2011, 7: 1322-1337
[10] Sharifi S, Behzadi S, Laurent S, Laird F M, Stroeve P, Mahmoudi M. Chem. Soc. Rev., 2012, 41: 2323-2343
[11] Song Y, Li X, Du X. Eur. Respir. J., 2009, 34: 559-567
[12] Khan M I, Mohammad A, Patil G, Naqvi S A H, Chauhan L K S, Ahmad I. Biomaterials, 2012, 33: 1477-1488
[13] Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Filon L F. Int. Arch. Occ. Env. Hea., 2009, 82: 1043-1055
[14] Shemetov A A, Nabiev I, Sukhanova A. ACS Nano, 2012, 6: 4585-4602
[15] Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C. Proc. Nat. Acad. Sci. U. S. A., 2011, 108: 16968-16973
[16] Asuri P, Karajanagi S S, Yang H, Yim T J, Kane R S, Dordick J S. Langmuir, 2006, 22: 5833-5836
[17] Klein J. Proc. Nat. Acad. Sci. U. S. A., 2007, 104: 2029-2030
[18] Chun A L. Nat. Nanotechnol., 2012. doi: 10.1038 /nnano. 2012. 159
[19] Lynch I, Dawson K A. Nano Today, 2008, 3: 40-47
[20] Linse S, Cabaleiro-Lago C, Xue W F, Lynch I, Lindman S, Thulin E, Radford S E, Dawson K A. Proc. Nat. Acad. Sci. U. S. A., 2007, 104: 8691-8696
[21] Walkey C D, Chan W C W. Chem. Soc. Rev., 2012, 41: 2780-2799
[22] Gebauer J S, Malissek M, Simon S, Knauer S K, Maskos M, Stauber R H, Peukert W, Treuel L. Langmuir, 2012, 28: 9673-9679
[23] 庄志雄(Zhuang Z X), 刘建军(Liu J J), 袁建辉(Yuan J H). 纳米毒理学(Nanotoxicology). 北京: 科学出版社(Beijing: Science Press), 2009. 172
[24] Sund J, Alenius H, Vippola M, Savolainen K, Puustinen A. ACS Nano, 2011, 5: 4300-4309
[25] Renwick L C, Brown D, Clouter A, Donaldson K. Occup. Environ. Med., 2004, 61: 442-447
[26] Möller W, Hofer T, Ziesenis A, Karg E, Heyder J. Toxicol. Appl. Pharm., 2002, 182: 197-207
[27] Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A. Eur. Rev. Med. Pharmacol. Sci., 2010, 14: 809-820
[28] Yokoyama T, Tam J, Kuroda S, Scott A W, Aaron J, Larson T, Shanker M, Correa A M, Kondo S, Roth J A, Sokolov K, Ramesh R. PLoS One, 2011, 6: e25507
[29] 周国强(Zhou G Q), 陈春英(Chen C Y), 李玉锋(Li Y F), 李炜(Li W), 高愈希(Gao Y X), 赵宇亮(Zhao Y L). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2008, 35: 998-1006
[30] Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A. J. Invest. Dermatol., 2006, 127: 143-153
[31] Sarkar S, Sharma C, Yog R, Periakaruppan A, Jejelowo O, Thomas R. J. Nanosci. Nanotechnol., 2009, 7: 584-592
[32] Cohen D, Soroka Y, Ma'or Z, Oron M, Portugal-Cohen M, Brégégère FM, Berhanu D, Valsami-Jones E, Hai N, Milner Y. Toxicol. in Vitro, 2012, 27: 292-298
[33] Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A. Toxicol. Sci., 2006, 91: 159-165
[34] Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, Kembuan C, Blume-Peytavi U, Rühl E, Lademann J, Vogt A. ACS Nano, 2012, 6: 6829-6842
[35] Larese F F, D'Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G. Toxicology, 2009, 255: 33-37
[36] Prow T W, Monteiro-Riviere N A, Erdmann D, Riviere J E, Roberts M S, Inman A O, Grice J E, Chen X, Zhao X, Sanchez W H, Gierden A, Kendall M A F, Zvyagin A V. Nanotoxicology, 2012, 6: 173-185
[37] Nohynek G, Dufour E. Arch. Toxicol., 2012, 86: 1063-1075
[38] Chen X, Schluesener H J. Toxicol. Lett., 2008, 176: 1-12
[39] Slütter B, Plapied L, Fievez V, Alonso S M, des Rieux A, Schneider Y J, van Riet E, Jiskoot W, Prat V. J. Control Release, 2009, 138: 113-121
[40] Jain A K, Goyal A K, Mishra N, Vaidya B, Mangal S, Vyas S P. Int. J. Pharm., 2010, 387: 253-262
[41] Winter M, Beer H D, Hornung V, Krämer U, Schins R P F, Förster I. Nanotoxicology, 2011, 5: 326-340
[42] He C, Yin L, Tang C, Yin C. Biomaterials, 2012, 33: 8569-8578
[43] Van der Zande M, Vandebriel R J, van Doren E, Kramer E, Herrera R Z, Serrano-Rojero C S, Gremmer E R, Mast J, Peters R J B, Hollman P C H, Hendriksen P J M, Marvin H J P, Peijnenburg A A C M, Bouwmeester H. ACS Nano, 2012, 6: 7427-7442
[44] Muthusamy B, Hanumanthu G, Suresh S, Rekha B, Srinivas D, Karthick L, Vrushabendra B M, Sharma S, Mishra G, Chatterjee P, Mangala K S, Shivashankar H N, Chandrika K N, Deshpande N, Suresh M, Kannabiran N, Niranjan V, Nalli A, Prasad T S K, Arun K S, Reddy R, Chandran S, Jadhav T, Julie D, Mahesh M, John S L, Palvankar K, Sudhir D, Bala P, Rashmi N S, Vishnupriya G, Dhar K, Reshma S, Chaerkady R, Gandhi T K B, Harsha H C, Mohan S S, Deshpande K S, Sarker M, Pandey A. Proteomics, 2005, 5: 3531-3536
[45] Cedervall T, Lynch I, Foy M, Berggård T, Donnelly S C, Cagney G, Linse S, Dawson K A. Angew. Chem. Int. Edit., 2007, 46: 5754-5756
[46] Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus G U, Musyanovych A, Mailänder V, Landfester K, Simmet T. ACS Nano, 2011, 5: 1657-1669
[47] Cole A J, David A E, Wang J, Galbán C J, Hill H L, Yang V C. Biomaterials, 2011, 32: 2183-2193
[48] Gagner J E, Shrivastava S, Qian X, Dordick J S, Siegel R W. J. Phys. Chem. Lett., 2012, 3: 3149-3158
[49] Anand G, Sharma S, Dutta A K, Kumar S K, Belfort G. Langmuir, 2010, 26: 10803-10811
[50] Deng Z J, Liang M, Toth I, Monteiro M, Minchin R F. Nanotoxicology, 2012, 7: 314-322
[51] Gagner J E, Lopez M D, Dordick J S, Siegel R W. Biomaterials, 2011, 32: 7241-7252
[52] De M, Miranda O R, Rana S, Rotello V M. Chem. Commun., 2009, 2157-2159
[53] Aggarwal P, Hall J B, McLeland C B, Dobrovolskaia M A, McNeil S E. Adv. Drug Deliv. Rev., 2009, 61: 428-437
[54] Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson K A, Linse S. Proc. Nat. Acad. Sci. U. S. A., 2007, 104: 2050-2055
[55] Lindman S, Lynch I, Thulin E, Nilsson H, Dawson K A, Linse S. Nano Letters, 2007, 7: 914-920
[56] Gebauer J S, Malissek M, Simon S, Knauer S K, Maskos M, Stauber R H, Peukert W, Treuel L. Langmuir, 2012, 28: 9673-9679
[57] Chakraborti S, Joshi P, Chakravarty D, Shanker V, Ansari Z A, Singh S P, Chakrabarti P. Langmuir, 2012, 28: 11142-11152
[58] Boyer C, Huang X, Whittaker M R, Bulmus V, Davis T P. Soft Matter, 2011, 7: 1599-1614
[59] Peiris R H, Ignagni N, Budman H, Moresoli C, Legge R L. Talanta, 2012, 99: 457-463
[60] Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson K A. Adv. Colloid Interface Sci., 2007, 134/135: 167-174
[61] Gagner J E, Qian X, Lopez M M, Dordick J S, Siegel R W. Biomaterials, 2012, 33: 8503-8516
[62] Norde W. Colloids and Surfaces. B: Biointerfaces, 2008, 61: 1-9
[63] Asuri P, Bale S S, Karajanagi S S, Kane R S. Curr. Opin. Biotech., 2006, 17: 562-568
[64] Roach P, Farrar D, Perry C C. J. Am. Chem. Soc., 2006, 128: 3939-3945
[65] Cabaleiro-Lago C, Lynch I, Dawson K A, Linse S. Langmuir, 2010, 26: 3453-3461
[66] Colvin V L, Kulinowski K M. Proc. Nat. Acad. Sci. U. S. A., 2007, 104: 8679-8680
[67] Zhang D, Neumann O, Wang H, Yuwono V M, Barhoumi A, Perham M, Hartgerink J D, Wittung-Stafshede P, Halas N J. Nano Letters, 2009, 9: 666-671
[68] Vertegel A A, Siegel R W, Dordick J S. Langmuir, 2004, 20: 6800-6807
[69] Deng Z J, Liang M, Monteiro M, Toth I, Minchin R F. Nat. Nano, 2011, 6: 39-44
[70] Calzolai L, Franchini F, Gilliland D, Rossi F. Nano Letters, 2010, 10: 3101-3105
[71] Bharti B, Meissner J, Findenegg G H. Langmuir, 2011, 27: 9823-9833
[72] Lacerda S H D P, Park J J, Meuse C, Pristinski D, Becker M L, Karim A, Douglas J F. ACS Nano, 2009, 4: 365-379
[73] Lesniak A, Fenaroli F, Monopoli M P, berg C, Dawson K A, Salvati A. ACS Nano, 2012, 6: 5845-5857
[74] Zhu Y, Li W, Li Q, Li Y, Li Y, Zhang X, Huang Q. Carbon, 2009, 47: 1351-1358
[75] Walkey C D, Olsen J B, Guo H, Emili A, Chan W C W. J. Am. Chem. Soc., 2011, 134: 2139-2147
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[3] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[4] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[5] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[6] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[7] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[8] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[9] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[10] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[11] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[12] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[13] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[14] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[15] 陈天有, 王子豪, 许子政, 徐祖顺, 曹峥. 基于树枝状聚合物的无机纳米颗粒的制备及应用[J]. 化学进展, 2020, 32(2/3): 249-261.