English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1149-1157 DOI: 10.7536/PC121152 前一篇   后一篇

• 综述与评论 •

1,1-二溴-2-取代苯基乙烯在环化反应中的应用

张文生1*, 李伟1, 匡春香2*   

  1. 1. 焦作师范高等专科学校理工学院 焦作 454001;
    2. 同济大学化学系 上海 200092
  • 收稿日期:2012-11-01 修回日期:2013-01-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 张文生, 匡春香 E-mail:tongjizws@163.com; cxkuang@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21272174)、河南省教育厅高校科技创新支持计划项目(No.2011HASTIT032)和焦作市科技局基础应用研究计划项目(No.201113)资助

Application of 1,1-Dibromo-2-Arylalkene in Cyclization Reaction

Zhang Wensheng1*, Li Wei1, Kuang Chunxiang2*   

  1. 1. School of Technology, Jiaozuo Teachers College, Jiaozuo 454001, China;
    2. Department of Chemistry, Tongji University, Shanghai 200092, China
  • Received:2012-11-01 Revised:2013-01-01 Online:2013-07-25 Published:2013-04-16

1,1-二溴-2-取代苯基乙烯是一种重要的有机合成中间体,该类化合物可以以芳醛为原料,通过Corey-Fuch法简便制备,并广泛应用于多取代烯烃、(E)-1-溴-2-取代苯基乙烯、芳炔、1,3-二炔 (多炔)、芳炔溴化物和炔胺等化合物的合成。1,1-二溴-2-取代苯基乙烯中的 (E)-Br和 (Z)-Br存在明显的反应活性差异,因而适合于设计各种串联反应路线。近年来,利用其 (E)-Br参与的Stille反应, Heck反应, Suzuki-Miyaura反应, Buchwald-Hartwig等各种偶联反应以及 (Z)-Br和取代苯基邻位各种活性反应基团之间的环化反应,以1,1-二溴-2-取代苯基乙烯衍生物为底物合成了异香豆素类、茚类、吲哚类、异吲哚类、苯并噻吩和苯并呋喃类等多种具有重要生理活性或有合成价值的稠 (杂)环化合物。本文从合成的化合物类别角度出发,对该领域近年来的研究进展进行了回顾和展望。

1,1-Dibromo-2-arylalkenes, a kind of important organic intermediates, which are easily prepared from aryl aldehydes by Corey and Fuchs' procedure, have been found wide applications in the synthesis of polysubstituted alkenes, (E)-arylvinyl bromides, arynes, 1,3-diynes, polyynes, 1-bromo-1-alkynes and ynamines. Due to the difference of reactive activity between (E)-Br and (Z)-Br, 1,1-dibromo-2-arylalkenes are fit for designing tandem reaction. In recent years, various fused ring compounds and heterocyclic compounds bearing potential biological activities and synthetic value including isocoumarin, indene, indole, isoindole, benzothiophene and benzofuran, etc. were synthesized through 1,1-dibromo-2-arylalkenes based on Stille reaction, Heck reaction, Suzuki-Miyaura reaction, Buchwald-Hartwig reaction, etc. involving the (E)-Br and cyclization between the (E)-Br and the active group at the para-position of the aryl ring. In this paper, the application of 1,1-dibromo-2-arylalkenes on cyclization reaction in the past decade is surveyed. Contents
1 Introduction
2 Synthesis of isocoumarin derivatives
3 Synthesis of indene derivatives
4 Synthesis of indole derivatives
5 Synthesis of isoindole derivatives
6 Synthesis of polycyclic heterocyclic compounds
7 Synthesis of benzothiophene and benzofuran derivatives
8 Synthesis of heterocyclic compounds containing two heteroatoms
9 Comments and outlook

中图分类号: 

()

[1] Corey E J, Fuchs P L. Tetrahedron Lett.,1972, 13: 3769-3772
[2] Chelucci G. Chem. Rev. 2012, 112: 1344-1462
[3] 许斌(Xu B), 麻生明(Ma S M). 有机化学(Chin. J. Org. Chem.),2001, 21: 252-262
[4] Zhang W S, Xu W J, Zhang F, Li J T, Liu M, Li W. Res. Chem. Intermed., 2012, 38: 957-964
[5] Wang J R, Manabe K. Synthesis, 2009, 1405-1427
[6] Minato A, Suzuki K, Tamao K. J. Am. Chem. Soc., 1987, 109: 1257-1258
[7] Roush W R, Koyama K, Curtin M L, Moriarty K J. J. Am. Chem. Soc., 1996, 118: 7502-7512
[8] Shen W, Wang L. J. Org. Chem., 1999, 64: 8873-8879
[9] Shen W. Synlett, 2000, 737-739
[10] Zeng X, Qian M, Hu Q, Negishi E. Angew. Chem. Int. Ed., 2004, 43: 2259-2263
[11] Molander G A, Yokoyama Y. J. Org. Chem., 2006, 71: 2493-2498
[12] Knorr R, Pires C, Freudenreich J. J. Org. Chem., 2007, 72: 6084-6090
[13] Kuang C X, Senbuko H, Tokuda M. Tetrahedron, 2002, 58: 1491-1496
[14] 张文生(Zhang W S), 匡春香(Kuang C X), 苏长会(Su C H). 化学试剂(Chemical Reagents), 2009, 31: 261-264
[15] Zeng X, Hu Q, Qian M, Negishi E. J. Am. Chem. Soc., 2003, 125: 13636-13637
[16] Shi J, Zeng X, Negishi E. Org. Lett., 2003, 5: 1825-1828
[17] Negishi E, Shi J C, Zeng X. Tetrahedron, 2005, 61: 9886-9895
[18] Zhao M, Kuang C X, Yang Q, Cheng X Z. Tetrahedron Lett., 2011, 52: 992-994
[19] Shen W, Thomas S A. Org. Lett., 2000, 2: 2857-2860
[20] Lera M, Hayes C J. Org. Lett., 2000, 2: 3873-3875
[21] Chelucci G, Capitta F, Baldino S. Tetrahedron, 2008, 64: 10250-10257
[22] Rao M L N, Jadhav D N, Dasgupta P. Org. Lett., 2010, 12: 2048-2051
[23] Zapata A J, Ruíz J. J. Organomet. Chem., 1994, 479: c6-c8
[24] Coste A, Karthikeyan G, Couty F, Evano G. Angew. Chem. Int. Ed., 2009, 48: 4381-4385
[25] Coste A, Couty F, Evano G. Org. Lett., 2009, 11: 4454-4457
[26] Wang L, Shen W. Tetrahedron Lett., 1998, 39: 7625-7628
[27] Ma S, Xu B. J. Org. Chem., 1998, 63: 9156-9157
[28] Ma S, Xu B, Ni B. J. Org. Chem., 2000, 65: 8532-8543
[29] Ye S Q, Ren H, Wu J. J. Comb. Chem., 2010, 12: 670-675
[30] Ye S Q, Yang X D, Wu J. Chem. Commun., 2010, 2950-2952
[31] Ye S Q, Wu J. Org. Lett., 2011, 13: 5980-5983
[32] Fang Y Q, Lautens M. Org. Lett., 2005, 7: 3549-3552
[33] Yuen J, Fang Y Q, Lautens M. Org. Lett., 2006, 8: 653-656
[34] Fayol A, Fang Y Q, Lautens M. Org. Lett., 2006, 8: 4203-4206
[35] Nagamochi M, Fang Y Q, Lautens M. Org. Lett., 2007, 9: 2955-2958
[36] Vieira T O, Meaney L A, Shi Y L, Alper H. Org. Lett., 2008, 10: 4899-4901
[37] Wu X F, Neumann H, Beller M. Chem. Rev., 2013, 113: 1-35
[38] Arthuis M, Pontikis R, Florent J C. Org. Lett., 2009, 11: 4608-4611
[39] Newman S G, Aureggi V, Bryan C S, Lautens M. Chem. Commun., 2009, 5236-5238
[40] Sun C Y, Xu B. J. Org. Chem., 2008, 73: 7361-7364
[41] Bryan C S, Lautens M. Org. Lett., 2008, 10: 4633-4636
[42] Wang Z J, Yang J G, Yang F, Bao W L. Org. Lett., 2010, 12: 3034-3037
[43] Chai D I, Lautens M. J. Org. Chem., 2009, 74: 3054-3061
[44] Xu H, Zhang Y, Huang J Q, Chen W Z. Org. Lett., 2010, 12: 3704-3707
[45] Rivera-Fuentes P, von Wantoch Rekowski M, Schweizer W. B, Gisselbrecht J P, Boudon C, Diederich F. Org. Lett., 2012, 14: 4066-4069
[46] Zeng F L, Alper H. Org. Lett., 2011, 13: 2868-2871
[47] Thielges S, Meddah E, Bisseret P, Eustache J. Tetrahedron Letters, 2004, 45: 907-910
[48] Ye S Q, Liu G, Pu S Z, Wu J. Org. Lett., 2012, 14: 70-73
[49] Shen W, Kohn T, Fu Z, Jiao X Y, Lai S, Schmitt M. Tetrahedron Lett., 2008, 49: 7284-7286
[50] Zhang A, Zheng X, Fan J, Shen W. Tetrahedron Lett., 2010, 51: 3246-3249
[51] Zhang A, Zheng X, Fan J, Shen W. Tetrahedron Lett., 2010, 51: 828-831
[52] LiuP,Tao K,Zhao L,Shen W,Zhang J. Tetrahedron Lett., 2012, 53: 560-563

[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[4] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[5] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[6] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[7] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[8] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[9] 杨宇东, 游劲松. 基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物[J]. 化学进展, 2020, 32(11): 1824-1834.
[10] 朱成浩, 张俊良. 钯催化有机卤化物与烷基炔的Heck型反应[J]. 化学进展, 2020, 32(11): 1745-1752.
[11] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[12] 钱丽华, 蓝国钧, 刘晓艳, 叶清枫, 李瑛. 生物质基分子水相催化加氢反应及多相催化剂[J]. 化学进展, 2019, 31(8): 1075-1085.
[13] 商天奕, 吕琪妍, 刘琰, 於兵. Ugi/Diels-Alder串联反应在构建杂环化合物中的应用[J]. 化学进展, 2019, 31(10): 1362-1371.
[14] 戴立信*. Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成[J]. 化学进展, 2018, 30(9): 1257-1297.
[15] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.