English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1229-1236 DOI: 10.7536/PC121149 前一篇   

• 综述与评论 •

高温共电解H2O/CO2制备清洁燃料

王振, 于波*, 张文强, 陈靖, 徐景明   

  1. 清华大学核能与新能源技术研究院 北京 100084
  • 收稿日期:2012-11-01 修回日期:2013-03-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 于波 E-mail:cassy_yu@tsinghua.edu.cn
  • 基金资助:

    “清华大学-剑桥大学-麻省理工学院”低碳能源大学联盟种子基金项目(No.2011LC004)、国家科技重大专项 (No.ZX06901)和国家自然科学基金项目 (No.21273128,51202123)资助

Clean Fuel Production Through High Temperature Co-Electrolysis of H2O and CO2

Wang Zhen, Yu Bo*, Zhang Wenqiang, Chen Jing, Xu Jingming   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2012-11-01 Revised:2013-03-01 Online:2013-07-25 Published:2013-04-16

高温共电解(high temperature co-electrolysis,HTCE)H2O和CO2技术是一种很有前景的清洁燃料制备和CO2减排新技术。该技术可利用可再生能源或核能提供的电能和高温热,通过高温固体氧化物电解池(solid oxide electrolysis cell, SOEC)将H2O和CO2共电解生产合成气(H2+CO),再将制备的合成气用于生产各种液态碳氢燃料。本文详细介绍了利用高温固体氧化物电解池共电解H2O和CO2制备合成燃料的基本原理、发展历程和目前世界各国的研究进展,对该技术的优势和特点进行了分析,并对该技术在关键材料、反应机理等方面存在的问题进行了总结和讨论,最后对其在新能源技术领域的应用前景作了展望。

High temperature co-electrolysis (HTCE) technology using solid oxide electrolysis cell (SOEC) is a promising method for the production of clean fuels. Also, it is a novel path of CO2 neutral cycle for utilizing CO2 and thus reducing CO2 emissions due to the generation and use of synthetic liquid fuels for the existing transportation infrastructure. It can make use of renewable energy or nuclear energy to split H2O and CO2 in SOEC system to produce synthesis gas (H2+CO), which is raw materials of synthetic hydrocarbon fuels. In this paper, the basic principle, the advantages of co-electrolysis of H2O and CO2 via SOEC for clean fuel production, the key technologies and challenges are described in detail. The main advantages of this technique lie in the following aspects:It can provide a carbon neutral means of producing syngas while consuming CO2;It can obtain very high efficiency when coupled with renewable energies or advanced nuclear reactors; It has high flexibility such as reversible operation, modular, scalable process, and so on. And it can also be used as an efficient storage means for fluctuating renewable energy. The current research situation around the world and its application prospects in the field of advanced energy technologies are also discussed. Contents
1 Introduction
2 Technical overview of HTCE
2.1 Principle of HTCE
2.2 Technical features
2.3 Key technologies of HTCE
3 Research status of HTCE
4 Conclusions and outlook

中图分类号: 

()

[1] Lashof D A, Ahuja D R. Nature, 1990, 344: 529-531
[2] 中华人民共和国国务院(Council of People's Republic of China). 节能减排“十二五”规划(Energy Saving of 12th Five-Year Plan), 2012, NO. 40. . http: //www.gov.cn/zwgk/2012-08/21/content_2207867.htm.
[3] Mimura T, Simayoshi H, Suda T, Iijima M, Mituoka S. Energy Conversion and Management, 1997, 38: S57-S62
[4] Aresta M, Dibenedetto A. Dalton Transactions, 2007, (28): 2975-2992
[5] Shinnar R. Technology in Society, 2003, 25(4): 455-476
[6] Simbeck D R. Energy, 2004, 29(9/10): 1633-1641
[7] Larson E D, Tingjin R. Energy for Sustainable Development, 2003, 7(4): 79-102
[8] Sudiro M, Bertucco A. Energy, 2009, 34(12): 2206-2214
[9] Mogensen M. ECS Transactions, 2012, 41(33): 3-11
[10] Xie Y Y, Xue X J. Solid State Ionics, 2012, 224: 64-73
[11] Sun X, Chen M, Hjalmarsson P, Ebbesen S D, Jensen S H, Mogensen M, Hendriksen P V. ECS Transactions, 2012, 41(33): 77-85
[12] Becker W L, Braun R J, Penev M, Melaina M. Energy, 2012, 47(1): 99-115
[13] Sridhar K R, Vaniman B T. Solid State Ionics, 1997, 93(3/4): 321-328
[14] Guan J, Doshi R, Lear G, Montgomery K, Ong E, Minh N. Journal of the American Ceramic Society, 2002, 85(11): 2651-2654
[15] Cullingford H S. US 5005787, 1991
[16] Jensen S H, Larsen P H, Mogensen M. International Journal of Hydrogen Energy, 2007, 32(15): 3253-3257
[17] Stoots C M, O'Brien J, Herring S, Lessing P, Hawkes G, Hartvigsen J. Syngas Generation from Co-Electrolysis (Syntrolysis). . https: //inlportal.inl.gov/portal/server.pt?open=514&objID=1269&mode=2&featurestory=DA_62004
[18] Schanke D, Bergene E, Holmen A. US 6211255 B1, 2001
[19] Hartvigsen J, Elangovan S, Frost L, Nickens A, Stoots C M, O'Brien J E, Herring J S. ECS Transactions, 2008, 12(1): 625-637
[20] Ciszkowski N A, Blake D R. Geophysical Research Letters, 2001, 28(7): 1235-1238
[21] Ebbesen S D, Graves C, Mogensen M. International Journal of Green Energy, 2009, 6(6): 646-660
[22] Abuadala A, Dincer I. International Journal of Hydrogen Energy, 2011, 36(20): 12780-12793
[23] Stoots C M, O'Brien J E, Herring J S, Hartvigsen J J. Journal of Fuel Cell Science and Technology, 2009, 6: art. no. 011014
[24] Fu Q, Mabilat C, Zahid M, Brisse A, Gautier L. Energy & Environmental Science, 2010, 3(10): 1382-1397
[25] Iora P, Chiesa P. Journal of Power Sources, 2009, 190(2): 408-416
[26] Marina O A, Pederson L R, Williams M C, Coffey G W, Meinhardt K D, Nguyen C D, Thomsen E C. Journal of the Electrochemical Society, 2007, 154(5): B452-B459
[27] Forsberg C, Kazimi M. Fourth OECD-NEA Information Exchange Meeting on the Nuclear Production of Hydrogen, MIT-NES-TR-010, 2009
[28] Evans A, Strezov V, Evans T J. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4141-4147
[29] Elder R, Allen R. Progress in Nuclear Energy, 2009, 51(3): 500-525
[30] Schulz H. Applied Catalysis A: General, 1999, 186(1/2): 3-12
[31] Menzler N H, Tietz F, Uhlenbruck S, Buchkremer H P, St O Ver D. Journal of Materials Science, 2010, 45(12): 3109-3135
[32] 陈建颖(Chen J Y), 曾凡蓉(Zen F R), 王绍荣(Wang S R), 陈玮(Chen W), 郑学斌(Zhen X B). 化学进展(Progress in Chemistry), 2011, 23(2): 463-469
[33] Doenitz W, Dietrich G, Erdle E, Streicher R. International Journal of Hydrogen Energy, 1988, 13(5): 283-287
[34] Nguyen Q M, Takahashi T. Science and Technology of Ceramic Fuel Cells. New York: Elsevier, 1995
[35] Isenberg A O. Solid State Ionics, 1981, 3: 431-437
[36] Marina O A, Pederson L R, Williams M C, Coffey G W, Meinhardt K D, Nguyen C D, Thomsen E C. Journal of the Electrochemical Society, 2007, 154(5): B452-B459
[37] Tao G, Sridhar K R, Chan C L. Solid State Ionics, 2004, 175(1): 621-624
[38] Stoots C, O'Brien J, Hartvigsen J. International Journal of Hydrogen Energy, 2009, 34(9): 4208-4215
[39] O'Brien J E, Mckellar M G, Stoots C M, Herring J S, Hawkes G L. International Journal of Hydrogen Energy, 2009, 34(9): 4216-4226
[40] Zhan Z, Kobsiriphat W, Wilson J R, Pillai M, Kim I, Barnett S A. Energy & Fuels, 2009, 23(6): 3089-3096
[41] Jensen S H, Sun X, Ebbesen S D, Knibbe R, Mogensen M. International Journal of Hydrogen Energy, 2010, 35(18): 9544-9549
[42] Ebbesen S D, Mogensen M. Journal of Power Sources, 2009, 193(1): 349-358
[43] Shiratori Y, Oshima T, Sasaki K. International Journal of Hydrogen Energy, 2008, 33(21): 6316-6321
[44] Graves C, Ebbesen S D, Mogensen M, Lackner K S. Renewable and Sustainable Energy Reviews, 2011, 15(1): 1-23
[45] Graves C, Ebbesen S D, Mogensen M. Solid State Ionics, 2011, 192(1): 398-403
[46] Xie K, Zhang Y, Meng G, Irvine J T S. Energy & Environmental Science, 2011, 4(6): 2218-2222
[47] Zhan Z, Zhao L. Journal of Power Sources, 2010, 195(21): 7250-7254
[48] Kim-Lohsoontorn P, Bae J. Journal of Power Sources, 2011, 196(17): 7161-7168
[49] Kim-Lohsoontorn P, Kim Y, Laosiripojana N, Bae J. International Journal of Hydrogen Energy, 2011, 36(16): 9420-9427
[50] Kim-Lohsoontorn P, Laosiripojana N, Bae J. Current Applied Physics, 2011, 11(1): S223-S228
[51] 张文强(Zhang W Q), 于波(Yu B), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2008, 20(5): 778-787

[1] 赵晨欢, 张文强, 于波*, 王建晨, 陈靖. 固体氧化物电解池[J]. 化学进展, 2016, 28(8): 1265-1288.
[2] 曹天宇, 史翊翔, 蔡宁生. 固体氧化物电解池NOx电化学还原技术[J]. 化学进展, 2013, 25(10): 1648-1655.
[3] 梁明德,于波,文明芬,陈靖,徐景明,翟玉春. YSZ电解质薄膜的制备方法*[J]. 化学进展, 2008, 20(0708): 1222-1232.
[4] 张文强,于波,陈靖,徐景明. 高温固体氧化物电解制氢技术*[J]. 化学进展, 2008, 20(05): 778-788.
[5] 周亚平,冯奎,孙艳,周理. 述评碳纳米管储氢研究*[J]. 化学进展, 2003, 15(05): 345-.
阅读次数
全文


摘要

高温共电解H2O/CO2制备清洁燃料