English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1177-1186 DOI: 10.7536/PC121147 前一篇   后一篇

• 综述与评论 •

汞离子荧光、比色传感器

林奇1, 陈佩1, 刘娟2, 符永鹏1, 张有明1, 魏太保1*   

  1. 1. 西北师范大学化学化工学院 教育部生态环境相关高分子材料重点实验室 甘肃省高分子 材料重点实验室 兰州 730070;
    2. 西北民族大学化工学院 兰州 730030
  • 收稿日期:2012-11-01 修回日期:2013-01-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 魏太保 E-mail:weitaibao@126.com
  • 基金资助:

    国家自然科学基金项目(No.21064006,21161018, 21262032)、教育部长江学者和创新团队发展计划 IRT1177和甘肃省自然科学基金项目(1010RJZA018)资助

Colorimetric and Fluorescent Chemosensors for Hg2+ Ions

Lin Qi1, Chen Pei1, Liu Juan2, Fu Yongpeng1, Zhang Youming1, Wei Taibao1*   

  1. 1. Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China;
    2. College of Chemical Engineering, Northwest University for Nationalities, Lanzhou 730030, China
  • Received:2012-11-01 Revised:2013-01-01 Online:2013-07-25 Published:2013-04-16

基于主客体识别的汞离子比色、荧光传感器由于使用方法简单、灵敏度高、不需要昂贵仪器等优势,受到了越来越多的关注。本文综述了近年来汞离子比色和荧光传感器的研究进展。本文根据作用机理将汞离子比色、荧光传感器分成三类,即通过特殊反应识别汞离子的传感器,通过配位作用识别汞离子的传感器以及基于纳米材料的汞离子传感器。其中通过特殊反应识别的传感器根据具体反应类型又可分成汞离子诱导的罗丹明上的内酰胺环开环型、汞离子与含硫(硒)的受体发生脱硫(硒)反应使受体氧化或关环型、汞离子与受体发生加汞化反应型和汞离子使受体发生汞离子催化的化学反应型这四类。本文对这些类型的汞离子传感器从设计原理、识别性能和机理等方面进行了介绍,并展望了该领域的研究方向。

The colorimetric or fluorescent Hg2+ sensors received more and more attention because these kinds of sensors possess a lot of advantages such as high sensitivity, not require expensive equipment and easy to operate. The advances in the research of colorimetric or fluorescent sensors for Hg2+ are highlighted in this review. We grouped these Hg2+ sonsors into three categories according to their recognition mechanisms, reaction based Hg2+ sensors, coordination based Hg2+ sensors, and nano-materials based Hg2+ sensors, respectively. For reaction based sensors, depending on their specific reaction mechanisms, we grouped them into four categories: Hg2+ induced Rhodamine spirolactam ring-opening process, Hg2+ induced desulfation or deselenization and cyclization process, selective mercuration reaction, and Hg2+ catalysed specific reaction. This review summarizes the main design principles, Hg2+ recognition abilities and recognition mechanism of these sensors. The developing orientation for futher research is presented. Contents
1 Introduction
2 Design principles of colorimetric or fluorescent Hg2+ sensors
3 Reaction based Hg2+ sensors
3.1 Hg2+ induced Rhodamine spirolactam ring-opening process
3.2 Hg2+ induced desulfation or deselenization and cyclization process
3.3 Selective mercuration reaction
3.4 Hg2+ catalysed specific reaction
4 Coordination based Hg2+ sensors
5 Nano-materials based Hg2+ sensors
6 Conclusion and outlook

中图分类号: 

()

[1] Campbell L, Dixon D G, Hecky R E. J. Toxicol. Env. Heal., B, 2003, 6: 325-356
[2] Harris H H, Pickering I J, George G N. Science, 2003, 301: 1203-1203
[3] Tchounwou P B, Ayensu W K, Ninashvili N, Sutton D. Environ. Toxicol., 2003, 18: 149-175
[4] Curley A, Sedlak V A, Girling E F, Hawk R E, Barthel W F, Pierce P E. Science, 1971, 2: 65-67
[5] Onyido I, Norris A R, Buncel E. Chem. Rev., 2004, 104: 5911-5929
[6] Strong L E. J. Chem. Educ., 1972, 49: 28-29
[7] Yang Y M, Zhao Q, Feng W, Li F Y. Chem. Rev., 2013, 113(1): 192-270
[8] Zhao Q, Li F Y, Huang C H. Chem. Soc. Rev., 2010, 39: 3007-3030
[9] Zhao Q, Huang C H, Li F Y. Chem. Soc. Rev., 2011, 40: 2508-2524
[10] Quang D T, Kim J S. Chem. Rev., 2010, 110: 6280-6301
[11] Kim H N, Ren W X, Kim J S, Yoon J. Chem. Soc. Rev., 2012, 41: 3210-3244
[12] Formica M, Fusi V, Giorgi L, Micheloni M. Coord. Chem. Rev., 2012, 256: 170-192
[13] Kim H N, Guo Z, Zhu W, Yoon J, Tian H. Chem. Soc. Rev., 2011, 40: 79-93
[14] Nolan E M, Lippard S J. Chem. Rev., 2008, 108: 3443-3480
[15] Aragay G, Pons J, Merkoi A. Chem. Rev., 2011, 111: 3433-3458
[16] Mahato P, Saha S, Suresh E, Liddo R D, Parnigotto P P, Conconi M T, Kesharwani M K, Ganguly B, Das A. Inorg. Chem., 2012, 51: 1769-1777
[17] Tang L, Li F, Liu M. Spectrochimica Acta A, 2011, 78: 1168-1172
[18] Yang H, Zhou Z, Huang K, Yu M, Li F, Yi T, Huang C. Org. Lett., 2007, 9(23): 4729-4732
[19] Soh J H, Swamy K M K, Kim S K, Kim S, Lee S H, Yoon J. Tetrahedron Lett., 2007, 48: 5966-5969
[20] Lee M H, Lee S J, Jung J H, Lim H, Kim J S. Tetrahedron, 2007, 63: 12087-12092
[21] Kumar M, Kumar N, Bhalla V, Singh H, Sharma P R, Kaur T. Org. Lett., 2011, 13(6): 1422-1425
[22] Huang W, Zhou P, Yan W B, He C, Xiong L Q, Li F Y, Duan C Y. J. Environ. Monit., 2009, 11: 330-335
[23] Guo Z, Zhu W, Zhu M, Wu X, Tian H. Chem. Eur. J., 2010, 16: 14424-14432
[24] Lee M H, Cho B K, Yoon J, Kim J S. Org. Lett., 2007, 9(22): 4515-4518
[25] Tsukamoto K, Shinohara Y, Iwasaki S, Maeda H. Chem. Commun., 2011, 5073-5075
[26] Jiang W, Wang W. Chem. Commun., 2009, 3913-3915
[27] Kim D, Yamamoto K, Ahn K H. Tetrahedron, 2012, 68: 5279-5282
[28] Shi W, Sun S, Li X, Ma H. Inorg. Chem., 2010, 49: 1206-1210
[29] Choi M G, Ryu D H, Jeon H L, Cha S, Cho J, Joo H H, Hong K S, Lee C, Ahn S, Chang S K. Org. Lett., 2008, 10(17): 3717-3720
[30] Li X H, Liu Z Q, Li F Y, Duan X F, Huang C H. Chin. J. Chem., 2007, 25: 186-189
[31] Song F, Watanabe S, Floreancig P E, Koide K. J. Am. Chem. Soc., 2008, 130(49): 16460-16461
[32] Santra M, Roy B, Ahn K H. Org. Lett., 2011, 13(13): 3422-3425
[33] Dong M, Wang Y W, Peng Y. Org. Lett., 2010, 12( 22): 5310-5313
[34] Ma X, Wang J, Shan Q L, Tan Z W, Wei G H, Wei D B, Du Y G. Org. Lett., 2012, 14(3): 820-823
[35] Kim J H, Kim H J, Kim S H, Lee J H, Do J H, Kim H J, Lee J H, Kim J S. Tetrahedron Lett., 2009, 50: 5958-5961
[36] Leng B, Jiang J, Tian H. AIChE J., 2010, 56: 2597-2564
[37] Cao Q Y, Lee M H, Zhang J F, Ren W X, Kim J S. Tetrahedron Lett., 2011, 52: 2786-2789
[38] Lee M H, Lee S W, Kim S H, Kang C, Kim J S. Org. Lett., 2008, 11(10): 2101-2104
[39] Samb I, Bell J, Toullec P Y, Michelet V, Leray I. Org. Lett., 2011, 13(5): 1182-1185
[40] Fang G, Xu M Y, Zeng F, Wu S Z. Langmuir, 2010, 26(22): 17764-17771
[41] Zhang X, Shiraishi Y, Hirai T. Tetrahedron Lett., 2008, 49: 4178-4181
[42] Liu X F, Miao L K, Jiang X, Ma Y W, Fan Q L, Huang W. Chin. J. Chem., 2011, 29: 1031-1035
[43] Kadarkaraisamy M, Thammavongkeo S, Basa P N, Caple G, Sykes A G. Org. Lett., 2011, 13(9): 2364-2367
[44] Huang R, Zheng X L, Wang C C, Wu R Y, Yan S Y, Yuan J Q, Weng X C, Zhou X. Chem. Asian J., 2012, 7: 915-918
[45] Cheng X H, Li S, Jia H Z, Zhong A S, Zhong C, Feng J, Qin J G, Li Z. Chem. Eur. J., 2012, 18: 1691-1699
[46] Liu C, Zhou Z G, Gao Y, Yang H, Li B G, Li F Y, Hang C H. Sci. Chin. B: Chem., 2009, 52: 760-764
[47] Suresh M, Mandal A K, Saha S, Suresh E, Mandoli A, Liddo R D, Parnigotto P P, Das A. Org. Lett., 2010, 12: 5406-5409
[48] Saha S, Mahato P, Reddy U, Suresh G E, Chakrabarty A, Baidya M, Ghosh S K, Das A. Inorg. Chem., 2012, 51: 336-345
[49] Chen Y, Wan L, Yu X, Li W, Bian Y, Jiang J. Org. Lett., 2011, 13(21): 5774-5777
[50] Lohani C R, Kim J M, Lee K H. Tetrahedron, 2011, 67: 4130-4136
[51] Liu X, Yang X, Fu Y, Zhu C, Cheng Y. Tetrahedron, 2011, 67: 3181-3186
[52] Weng J N, Mei Q B, Ling Q D, Fan Q L, Huang W. Tetrahedron, 2012, 68(14): 3129-3134
[53] Lu H, Xiong L Q, Liu H Z, Yu M X, Shen Z, Li F Y, You X Z. Org. Biomol. Chem., 2009, 7: 2554-2558
[54] Yang H, Zhou Z G, Xu J, Li F Y, Yi T, Huang C H. Tetrahedron, 2007, 63: 6732-6736
[55] Zhao Q, Liu S J, Li F Y, Yi T, Huang C H. Dalton Trans., 2008, 3836-3840
[56] Wu Y Q, Jing H, Dong Z S, Zhao Q, Wu H Z, Li F Y. Inorg. Chem., 2011, 50: 7412-7420
[57] Zhao Q, Cao T Y, Li F Y, Li X H, Jing H, Yi T, Huang C H. Organometallics, 2007, 26: 2077-2081
[58] Liu Y, Li M Y, Zhao Q, Wu H Z, Huang K W, Li F Y. Inorg. Chem., 2011, 50: 5969-5977
[59] Zhang Y M, Liu M X, Lin Q, Li Q, Wei T B. J. Chem. Research, 2010, 11: 619-621
[60] Zhang Y M, Li P, Lin Q, Wei T B, Li J Q. Phosphorus, Sulfurand Silicon Related Elements, 2011, 186(12): 2286-2294
[61] Zhang Y M, Shi B B, Zhang P, Lin Q, Chen P, Liu J, Wei T B. Sci. China Chem., 2013, 56(5): 612-618
[62] Lin Q, Fu Y P, Chen P, Wei T B, Zhang Y M. Dyes Pigments, 2013, 96: 1-6
[63] Shunmugam R, Gabriel G J, Smith C E, Aamer K A, Tew G N, Chem. Eur. J., 2008, 14: 3904-3907
[64] Yang X B, Ge J F, Xu Q F, Zhu X L, Li N J, Gu H W, Lu J M. Tetrahedron Lett., 2011, 52: 2492-2495
[65] Chen C, Wang R, Guo L, Fu N, Dong H, Yuan Y. Org. Lett., 2011, 13(5): 1162-1165
[66] Yan Y, Hu Y, Zhao G, Kou X. Dyes Pigments, 2008, 79: 210-215
[67] Cheng Y, Zhang M, Yang H, Li F, Yi T, Huang C. Dyes Pigments, 2008, 76: 775-783
[68] Zhu M, Yuan M, Liu X, Xu J, Lv J, Huang C, Liu H, Li Y, Wang S, Zhu D. Org. Lett., 2008, 10(7): 1481-1484
[69] Yu Y, Lin L R, Yang K B, Zhong X, Huang R B, Zheng L S. Talanta, 2006, 69: 103-106
[70] Maheshwari M, Khan S, Singh J D. Tetrahedron Lett., 2007, 48: 4737-4741
[71] Martínez R, Espinosa A, Tárraga A, Molina P. Tetrahedron, 2010, 66: 3662-3667
[72] Mu H, Gong R, Ma Q, Sun Y, Fu E. Tetrahedron Lett., 2007, 48: 5525-5529
[73] Tan J, Yan X P. Talanta, 2008, 76: 9-14
[74] Lee J W, Jung H S, Kwon P S, Kim J W, Bartsch R A, Kim Y, Kim S J, Kim J S. Org. Lett., 2008, 10(17): 3801-3804
[75] Liu L, Zhang G, Xiang J, Zhang D, Zhu D. Org. Lett., 2008, 10(20): 4581-4584
[76] Liu S J, Nie H G, Jiang J H, Shen G L, Yu R Q. Anal. Chem., 2009, 81: 5724-5730
[77] Shao N, Pang G X, Yan C X, Shi G F, Cheng Y. J. Org. Chem., 2011, 76: 7458-7465
[78] Guo W, Yuan J, Wang E. Chem. Commun., 2009, 3395-3397
[79] Wang C X, Xu L, Wang Y, Zhang D, Shi X D, Dong F X, Yu K, Lin Q, Yang B. Chem. Asian J., 2012, 7(7): 1652-1656
[80] Liu Q, Peng J J, Sun L N, Li F Y. ACS Nano, 2011, 5: 8040-8048
[81] Ramesh G V, Radhakrishnan T P. ACS Appl. Mater. Interfaces, 2011, 3: 988-994
[82] Krishna D G, Anandhi R, Chandra R P. ACS Nano, 2007, 1(3): 208-214

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[6] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[7] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[8] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[9] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[12] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[13] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[14] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[15] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
阅读次数
全文


摘要

汞离子荧光、比色传感器