English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 446-456 DOI: 10.7536/PC121131 前一篇   后一篇

• 新领域 •

必需金属的生物信息学研究现状与展望

李高鹏, 张焱*   

  1. 中国科学院上海生命科学研究院 营养科学研究所 上海 200031
  • 收稿日期:2012-11-01 修回日期:2013-01-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 张焱 E-mail:yanzhang01@sibs.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 31171233)和中国科学院百人计划项目(No. 2012OHTP10)资助

Progress in Bioinformatics Studies on Essential Metals

Li Gaopeng, Zhang Yan*   

  1. Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
  • Received:2012-11-01 Revised:2013-01-01 Online:2013-04-24 Published:2013-04-09

金属元素在整个生物界被广泛利用。生物体所必需的金属中除了钾、钙、钠和镁以外均属于微量元素。它们虽然在体内含量很少,但在各种生命活动中发挥着重要的作用。一直以来关于必需金属的研究工作主要集中在金属蛋白和相关代谢机制的实验研究上。随着近年来基因组、蛋白质组等组学数据的不断积累,为开展金属、金属组和金属蛋白质组等相关的生物信息学研究工作提供了重要的条件,让我们可以从系统的角度去进一步认识必需金属的利用、代谢及其生物学功能。本文将分别对若干必需金属(包括铜、钼、镍、钴、锌、铁和硒等)相关的生物信息学研究进展进行介绍,并结合当前离子组学相关的技术方法和研究现状。希望本文有助于我们进一步认识必需金属研究领域的重要问题和未来的发展方向。

Metals are utilized through the three domains of life. Except for potassium, calcium, sodium and magnesium, all essential metals are trace elements. They play important roles in a variety of biological processes, but are needed in very small quantities. Previously, much effort has been focused on experimental studies of metal utilization pathways and metalloproteins. However, with the accumulation of large amount of data from genomics and proteomics studies, it becomes necessary and possible for computational and systematic analyses of the metallomes (or metalloproteomes) to be carried on, which would provide new insights into metal utilization, metabolization and biological functions. In this review, we introduce recent advances in bioinformatics studies on several metals, such as copper, molybdenum, nickel, cobalt, zinc, iron and the metalloid selenium. Furthermore, we also discuss the major techniques and recent advances of high-throughput ionomics studies. We hope that this review may provide a foundation for investigating the fundamental questions and future directions of metal research.

Contents
1 Introduction
2 Copper
3 Molybdenum
4 Nickel and cobalt
5 Zinc
6 Iron
7 Selenium
8 Ionomics
9 Conclusions and outlook

中图分类号: 

()

[1] Mertz W. Science, 1981, 213: 1332-1338
[2] Mertz W. Biol. Trace Elem. Res., 1998, 66: 185-191
[3] Goldhaber S B. Regul. Toxicol. Pharmacol., 2003, 38: 232-242
[4] Van Gossum A, Neve J. Curr. Opin. Clin. Nutr. MeTab. Care, 1998, 1: 499-507
[5] Ba L A, Doering M, Burkholz T, Jacob C. Metallomics, 2009, 1: 292-311
[6] Patzer S I, Hantke K. Mol. Microbiol., 1998, 28: 1199-1210
[7] Bartsevich V V, Pakrasi H B. J. Biol. Chem., 1996, 271: 26057-26061
[8] Maupin-Furlow J A, Rosentel J K, Lee J H, Deppenmeier U, Gunsalus R P, Shanmugam K T. J. Bacteriol., 1995, 177: 4851-4856
[9] Eitinger T, Mandrand-Berthelot M A. Arch. Microbiol., 2000, 173: 1-9
[10] Makui H, Roig E, Cole S T, Helmann J D, Gros P, Cellier M F. Mol. Microbiol., 2000, 35: 1065-1078
[11] Liuzzi J P, Cousins R J. Annu. Rev. Nutr., 2004, 24: 151-172
[12] Grass G, Franke S, Taudte N, Nies D H, Kucharski L M, Maguire M E, Rensing C. J. Bacteriol., 2005, 187: 1604-1611
[13] Phung L T, Ajlani G, Haselkorn R. Proc. Natl. Acad. Sci. U. S. A., 1994, 91: 9651-9654
[14] Dancis A, Yuan D S, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner R D. Cell, 1994, 76: 393-402
[15] Degen O, Eitinger T. J. Bacteriol., 2002, 184: 3569-3577
[16] Ackland M L, McArdle H J. Biometals, 1996, 9: 29-37
[17] Maguire M E. Methods Mol. Biol., 2007, 394: 289-305
[18] Bremner I, Beattie J H. Proc. Nutr. Soc., 1995, 54: 489-499
[19] Schwarz G, Mendel R R. Annu. Rev. Plant Biol., 2006, 57: 623-647
[20] Kräutler B. Biochem. Soc. Trans., 2005, 33: 806-810
[21] Coleman J E. Annu. Rev. Biochem., 1992, 61: 897-946
[22] Wattt R K, Ludden P W. Cell. Mol. Life Sci., 1999, 56: 604-625
[23] Haraguchi H. J. Anal. At. Spectrom., 2004, 19: 5-14
[24] Peña M M, Lee J, Thiele D J. J. Nutr., 1999, 129: 1251-1260
[25] Gaetke L M, Chow C K. Toxicology, 2003, 189: 147-163
[26] Tottey S, Rondet S A M, Borrelly G P M, Robinson P J, Rich P R, Robinson N J. J. Biol. Chem., 2002, 277: 5490-5497
[27] Banci L, Bertini I, Ciofi-Baffoni S, Su X C, Borrelly G P M, Robinson N J. J. Biol. Chem., 2004, 279: 27502-27510
[28] Bull P C, Thomas G R, Rommens J M, Forbes J R, Cox D W. Nat. Genet., 1993, 5: 327-337
[29] Burkhead J L, Gray L W, Lutsenko S. Biometals, 2011, 24: 455-466
[30] Andreini C, Bertini I, Rosato A. Bioinformatics, 2004, 20: 1373-1380
[31] Andreini C, Banci L, Bertini I, Rosato A. J. Proteome Res., 2008, 7: 209-216
[32] Ridge P G, Zhang Y, Gladyshev V N. PLoS ONE, 2008, 3: e1378
[33] Zhang Y, Gladyshev V N. J. Biol. Chem., 2010, 285: 3393-3405
[34] Zhang Y, Gladyshev V N. Chem. Rev., 2009, 109: 4828-4861
[35] Roelofsen H, Balgobind R, Vonk R J. J. Cell. Biochem., 2004, 93: 732-740
[36] Kulkarni P P, She Y M, Smith S D, Roberts E A, Sarkar B. Chemistry, 2006, 12: 2410-2422
[37] Wilmarth P A, Short K K, Fiehn O, Lutsenko S, David L L, Burkhead J L. Metallomics, 2012, 4: 660-668
[38] Mendel R R. Biofactors, 2009, 35: 429-434
[39] Hille R. Trends Biochem. Sci., 2002, 27: 360-367
[40] Schwarz G, Mendel R R, Ribbe M W. Nature, 2009, 460: 839-847
[41] Grunden A M, Ray R M, Rosentel J K, Healy F G, Shanmugam K T. J. Bacteriol., 1996, 178: 735-744
[42] Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 18807-18812
[43] Tejada-Jiménez M, Galván A, Fernández E. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 6420-6425
[44] Zhang Y, Gladyshev V N. J. Mol. Biol., 2008, 379: 881-899
[45] Zhang Y, Rump S, Gladyshev V N. Coord. Chem. Rev., 2011, 255: 1206-1217
[46] Banerjee R, Ragsdale S W. Annu. Rev. Biochem., 2003, 72: 209-247
[47] Rodionov D A, Vitreschak A G, Mironov A A, Gelfand M S. J. Biol. Chem., 2003, 278: 41148-41159
[48] Rodionov D A, Hebbeln P, Gelfand M S, Eitinger T. J. Bacteriol., 2006, 188: 317-327
[49] Zhang Y, Rodionov D A, Gelfand M S, Gladyshev V N. BMC Genomics, 2009, 10: art. no. 78
[50] Heiss K, Junkes C, Guerreiro N, Swamy M, Camacho-Carvajal M M, Schamel W W A, Haidl I D, Wild D, Weltzien H U, Thierse H J. Proteomics, 2005, 5: 3614-3622
[51] Hershfinkel M, Silverman W F, Sekler I. Mol. Med., 2007, 13: 331-336
[52] Fosmire G J. Am. J. Clin. Nutr., 1990, 51: 225-227
[53] Andreini C, Banci L, Bertini I, Rosato A. J. Proteome Res., 2006, 5: 3173-3178
[54] Makarova K S, Ponomarev V A, Koonin E V. Genome Biol., 2001, 2: art. no. RESEARCH 0033
[55] Panina E M, Mironov A A, Gelfand M S. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 9912-9917
[56] Zhang Y, Gladyshev V N. J. Biol. Chem., 2011, 286: 23623-23629
[57] Andreini C, Bertini I, Cavallaro G, Holliday G L, Thornton J M. J. Biol. Inorg. Chem., 2008, 13: 1205-1218
[58] Imbert M, Blondeau R. Curr. Microbiol., 1998, 37: 64-66
[59] Posey J E, Gherardini F C. Science, 2000, 288: 1651-1653
[60] Andreini C, Banci L, Bertini I, Elmi S, Rosato A. Proteins, 2007, 67: 317-324
[61] Andreini C, Bertini I, Rosato A. Acc. Chem. Res., 2009, 42: 1471-1479
[62] Andreini C, Bertini I, Cavallaro G, Najmanovich R J, Thornton J M. J. Mol. Biol., 2009, 388: 356-380
[63] Cavallaro G, Decaria L, Rosato A. J. Proteome Res., 2008, 7: 4946-4954
[64] Hatfield D L, Gladyshev V N. Mol. Cell. Biol., 2002, 22: 3565-3576
[65] Kryukov G V, Kryukov V M, Gladyshev V N. J. Biol. Chem., 1999, 274: 33888-33897
[66] Zhang Y, Gladyshev V N. Bioinformatics, 2005, 21: 2580-2589
[67] Lescure A, Gautheret D, Carbon P, Krol A. J. Biol. Chem., 1999, 274: 38147-38154
[68] Jiang L, Liu Q, Ni J. BMC Genomics, 2010, 11: 289
[69] Zhang Y, Fomenko D E, Gladyshev V N. Genome Biol., 2005, 6: art. no. R37
[70] Zhang Y, Gladyshev V N. Nucleic Acids Res., 2007, 35: 4952-4963
[71] Zhang Y, Gladyshev V N. PLoS Genet., 2008, 4: art. no. e1000095
[72] Zhang Y, Romero H, Salinas G, Gladyshev V N. Genome Biol., 2006, 7: art. no. R94
[73] Gobler C J, Berry D L, Dyhrman S T, Wilhelm S W, Salamov A, Lobanov A V, Zhang Y, Collier J L, Wurch L L, Kustka A B, Dill B D, Shah M, VerBerkmoes N C, Kuo A, Terry A, Pangilinan J, Lindquist E A, Lucas S, Paulsen I T, Hattenrath-Lehmann T K, Talmage S C, Walker E A, Koch F, Burson A M, Marcoval M A, Tang Y-Z, Lecleir G R, Coyne K J, Berg G M, Bertrand E M, Saito M A, Gladyshev V N, Grigoriev I V. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 4352-4357
[74] Lobanov A V, Fomenko D E, Zhang Y, Sengupta A, Hatfield D L, Gladyshev V N. Genome Biol., 2007, 8: art. no. R198
[75] Mariotti M, Ridge P G, Zhang Y, Lobanov A V, Pringle T H, Guigo R, Hatfield D L, Gladyshev V N. PLoS ONE, 2012, 7: art. no. e33066
[76] Zhang H, Dong Y, Zhao H, Brooks J D, Hawthorn L, Nowak N, Marshall J R, Gao A C, Ip C. Cancer Genomics Proteomics, 2005, 2: 97-114
[77] Méplan C. J. Trace Elem. Med. Biol., 2011, 25 Suppl 1: S11-S16
[78] Kipp A, Banning A, Van Schothorst E M, Méplan C, Schomburg L, Evelo C, Coort S, Gaj S, Keijer J, Hesketh J, Brigelius-Flohé R. Mol. Nutr. Food Res., 2009, 53: 1561-1572
[79] Fontana L, Partridge L, Longo V D. Science, 2010, 328: 321-326
[80] Mahn A V, Muñoz M C, Zamorano M J. J. Chromatogr. Sci., 2009, 47: 840-843
[81] Costa-Mallen P, Checkoway H, Zabeti A, Edenfield M J, Swanson P D, Longstreth W T Jr, Franklin G M, Smith-Weller T, Sadrzadeh S M H. Am. J. Med. Genet. B Neuropsychiatr. Genet., 2008, 147B: 216-222
[82] Ingenbleek Y, Young V. Annu. Rev. Nutr., 1994, 14: 495-533
[83] Kannel W B, Wolf P A, Castelli W P, D’Agostino R B. JAMA, 1987, 258: 1183-1186
[84] Lahner B, Gong J, Mahmoudian M, Smith E L, Abid K B, Rogers E E, Guerinot M L, Harper J F, Ward J M, McIntyre L, Schroeder J I, Salt D E. Nat. Biotechnol., 2003, 21: 1215-1221
[85] Baxter I. Brief. Funct. Genomics, 2010, 9: 149-156
[86] Baxter I, Muthukumar B, Park H C, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford M J, Guerinot M L, Salt D E. PLoS Genet., 2008, 4: art. no. e1000004
[87] Morrissey J, Baxter I R, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt D E, Guerinot M L. Plant Cell, 2009, 21: 3326-3338
[88] Eide D J, Clark S, Nair T M, Gehl M, Gribskov M, Guerinot M L, Harper J F. Genome Biol., 2005, 6: art. no. R77
[89] Sun L, Yu Y, Huang T, An P, Yu D, Yu Z, Li H, Sheng H, Cai L, Xue J, Jing M, Li Y, Lin X, Wang F. PLoS ONE, 2012, 7: art. no. e38845

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[4] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[8] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[11] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[12] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[15] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.