English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 940-960 DOI: 10.7536/PC121120 前一篇   后一篇

• 综述与评论 •

功能化离子液体催化碳-杂键形成反应

李满1,2, 杨磊1, 韩峰1, 陈静1*, 夏春谷1   

  1. 1. 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州 730000;
    2. 中国科学院大学 北京 100039
  • 收稿日期:2012-11-01 修回日期:2013-01-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 陈静 E-mail:chenj@licp.cas.cn
  • 基金资助:

    国家自然科学基金项目(No.21173241,21133011)和国家重点基础研究发展计划(973)项目(2011CB201404)资助

Task-Specific Ionic Liquids Catalyzed Carbon-Heteroatom Bond Formation Reactions

Li Man1,2, Yang Lei1, Han Feng1, Chen Jing1*, Xia Chungu1   

  1. 1. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2012-11-01 Revised:2013-01-01 Online:2013-06-25 Published:2013-05-02

离子液体独特的溶剂性能使它在合成和催化领域得到了广泛的应用。然而, 离子液体的经济问题和可能的环境友好性问题使得人们逐渐把目光投向了离子液体自身的催化性能。人们通过对离子液体结构的修饰设计出了各种具有特定催化性能的功能化离子液体。近年来功能化离子液体在催化碳-杂键形成反应方面有了相当多的应用。本文以形成的碳-杂原子键类型为主线, 综述了功能化离子液体在催化碳-杂键形成反应方面的最新研究进展, 涉及到了酸性离子液体、碱性离子液体、金属有机功能化离子液体、酸碱双功能离子液体、手性离子液体等多种类型的功能化离子液体。

Ionic liquids have emerged as excellent solvents for synthesis and catalysis in the past decades due to their special properties. However, their relatively high cost and potential risks to human health and environment make their function as catalysts rather than solvents more popular. Incorporating specific functional group(s) into one or both ions of ionic liquids to make them catalytic is highly important. Numerous so-called task-specific or functionalized ionic liquids are designed and successfully applied in catalyzing various reactions. In this review, we present the latest achievements in the carbon-heteroatom bond formation reactions catalyzed by task-specific ionic liquids. The contents are arranged according to the specific types of carbon-heteroatom bond formation reactions. As for the type of task-specific ionic liquids, this review focuses on acidic ionic liquids, basic ionic liquids, organometallic ionic liquids, acid-base bifunctional ionic liquids and chiral ionic liquids. Contents
1 Introduction
2 Formation of carbon-oxygen bonds
2.1 Formation of esters
2.2 Formation of ethers
2.3 Protection of carbonyl and hydroxyl groups
2.4 Oxidation of olefins
2.5 Related carbonylation reactions
2.6 Synthesis of oxygen-containing heterocycles
3 Formation of carbon-nitrogen bonds
3.1 Formation of β-amino carbonyl compounds
3.2 Formation of amides
3.3 Formation of carbon-nitrogen double bonds
3.4 N-Alkylation reaction
3.5 Hydroamination reaction
3.6 Protection of amino groups
3.7 Nitration reaction
3.8 Asymmetric aza Diels-Alder reaction
3.9 Related carbonylation reactions
3.10 Synthesis of nitrogen-containing heterocycles
4 Formation of other carbon-heteroatom bonds
4.1 Formation of carbon-sulfur bonds
4.2 Formation of carbon-halogen bonds
5 Conclusion and outlook

中图分类号: 

()

[1] De Cienfuegos L Á, Robles R, Miguel D, Justicia J, Cuerva J M. ChemSusChem, 2011, 4: 1035-1048
[2] Chen J, Spear S K, Huddleston J G, Rogers R D. Green Chem., 2005, 7: 64-82
[3] Horváth I T, Anastas P T. Chem. Rev., 2007, 107: 2169-2173
[4] Welton T. Chem. Rev., 1999, 99: 2071-2083
[5] Wasserscheid P, Keim W. Angew. Chem. Int. Ed., 2000, 39: 3772-3789
[6] Zhao D B, Wu M, Kou Y, Min E Z. Catal. Today, 2002, 74: 157-189
[7] Dupont J, de Souza R F, Suarez P A Z. Chem. Rev., 2002, 102: 3667-3691
[8] Cole-Hamilton D J. Science, 2003, 299: 1702-1706
[9] Pǎrvulescu V I, Hardacre C. Chem. Rev., 2007, 107: 2615-2665
[10] Betz D, Altmann P, Cokoja M, Herrmann W A, Kühn F E. Coord. Chem. Rev., 2011, 255: 1518-1540
[11] Hallett J P, Welton T. Chem. Rev., 2011, 111: 3508-3576
[12] Costello D M, Brown L M, Lamberti G A. Green Chem., 2009, 11: 548-553
[13] Lataa A, Ndzi M, Stepnowski P. Green Chem., 2009, 11: 580-588
[14] Petkovic M, Seddon K R, Rebelo L P N, Pereira C S. Chem. Soc. Rev., 2011, 40: 1383-1403
[15] Coleman D, Gathergood N. Chem. Soc. Rev., 2010, 39: 600-637
[16] Davis J H. Chem. Lett., 2004, 33: 1072-1077
[17] Giernoth R. Angew. Chem. Int. Ed., 2010, 49: 2834-2839
[18] Hajipour A R, Rafiee F. Org. Prep. Proced. Int., 2010, 42: 285-362
[19] Wang B, Zhou S, Sun Y C, Xu F, Sun R C. Curr. Org. Chem., 2011, 15: 1392-1422
[20] 钟涛(Zhong T), 乐长高(Le Z G), 谢宗波(Xie Z B), 曹霞(Cao X), 吕雪霞(Lv X X). 有机化学(Chin. J. Org. Chem.), 2010, 30(7): 981-987
[21] Bica K, Gaertner P. Eur. J. Org. Chem., 2008, 3235-3250
[22] Luo S Z, Zhang L, Cheng J P. Chem. Asian J., 2009, 4: 1184-1195
[23] Hartwig J F. Nature, 2008, 455: 314-322
[24] Corma A, Leyva-Pérez A, Sabater M J. Chem. Rev., 2011, 111: 1657-1712
[25] Miao W S, Chan T H. Acc. Chem. Res., 2006, 39: 897-908
[26] Gu Y L, Li G X. Adv. Synth. Catal., 2009, 351: 817-847
[27] Monge-Marcet A, Pleixats R, Cattoën X, Man M. Catal. Sci. Technol., 2011, 1: 1544-1563
[28] Zhang Q H, Zhang S G, Deng Y Q. Green Chem., 2011, 13: 2619-2637
[29] Li H, Bhadury P S, Song B A, Yang S. RSC Adv., 2012, 2: 12525-12551
[30] Selvam T, Machoke A, Schwieger W. Appl. Catal. A: Gen., 2012, 445/446: 92-101
[31] Pereira M M A. Curr. Org. Chem., 2012, 16: 1680-1710
[32] Šebesta R, Kmentová I, Toma Š。 Green Chem., 2008, 10: 484-496
[33] Huo C D, Chan T H. Chem. Soc. Rev., 2010, 39: 2977-3006
[34] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. J. Am. Chem. Soc., 2002, 124: 5962-5963
[35] Leng Y, Wang J, Zhu D R, Ren X Q, Ge H Q, Shen L. Angew. Chem. Int. Ed., 2009, 48: 168-171
[36] Zhao Y W, Long J X, Deng F G, Liu X F, Li Z, Xia C G, Peng J J. Catal. Commun., 2009, 10: 732-736
[37] Liu X M, Ma H Y, Wu Y, Wang C, Yang M, Yan P F, Welz-Biermann U. Green Chem., 2011, 13: 697-701
[38] Li H, Qiao Y X, Hua L, Hou Z S, Feng B, Pan Z Y, Hu Y, Wang X R, Zhao X G, Yu Y Y. ChemCatChem, 2010, 2: 1165-1170
[39] Zhang S D, Lefebvre H, Tessier M, Fradet A. Green Chem., 2011, 13: 2786-2793
[40] Yang Z Z, He L N, Dou X Y, Chanfreau S. Tetrahedron Lett., 2010, 51: 2931-2934
[41] Chiappe C, Rajamani S. Pure Appl. Chem., 2012, 84: 755-762
[42] Gade S M, Munshi M K, Chherawalla B M, Rane V H, Kelkar A A. Catal. Commun., 2012, 27: 184-188
[43] Selva M, Noè M, Perosa A, Gottardo M. Org. Biomol. Chem., 2012, 10: 6569-6578
[44] Han S, Luo M, Zhou X L, He Z, Xiong L P. Ind. Eng. Chem. Res., 2012, 51: 5433-5437
[45] Qureshi Z S, Deshmukh K M, Bhor M D, Bhanage B M. Catal. Commun., 2009, 10: 833-837
[46] Deshmukh K M, Qureshi Z S, Dhake K P, Bhanage B M. Catal. Commun., 2010, 12: 207-211
[47] Li K X, Chen L, Yan Z C, Wang H L. Catal. Lett., 2010, 139: 151-156
[48] Li K X, Chen L, Wang H L, Lin W B, Yan Z C. Appl. Catal. A: Gen., 2011, 392: 233-237
[49] Baj S, Chrobok A, Supska R. Green Chem., 2009, 11: 279-282
[50] Chrobok A. Tetrahedron, 2010, 66: 6212-6216
[51] Guo H, Li X, Wang J L, Jin X H, Lin X F. Tetrahedron, 2010, 66: 8300-8303
[52] Kim J H, Kwak S, Lee J S, Vo H T, Kim C S, Kang H J, Kim H S, Lee H. Appl. Catal. B: Environ., 2009, 89: 137-141
[53] Jeong Y, Kim D Y, Choi Y, Ryu J S. Org. Biomol. Chem., 2011, 9: 374-378
[54] Kore R, Kumar T J D, Srivastava R. J. Mol. Catal. A: Chem., 2012, 360: 61-70
[55] Kore R, Srivastava R. Tetrahedron Lett., 2012, 53: 3245-3249
[56] Ma X M, Jiang T, Han B X, Huang J, Zhu A L, Zhang J C. Curr. Org. Chem., 2007, 11: 477-482
[57] Kalviri H A, Kerton F M. Adv. Synth. Catal., 2011, 353: 3178-3186
[58] Zhang S D, Féret A, Lefebvre H, Tessier M, Fradet A. Chem. Commun., 2011, 47: 11092-11094
[59] Liang S G, Liu H Z, Zhou Y X, Jiang T, Han B X. New J. Chem., 2010, 34: 2534-2536
[60] De C Y, Cai Q H, Wang X G, Zhao J X, Lu B. J. Chem. Technol. Biotechnol., 2011, 86: 105-108
[61] Li Y L, Gu D G, Xu X P, Ji S J. Chin. J. Chem., 2009, 27: 1558-1562
[62] Hu Y L, Ma X Y, Lu M. Can. J. Chem., 2011, 89: 471-480
[63] Guchhait G, Misra A K. Catal. Lett., 2011, 141: 925-930
[64] Procuranti B, Connon S J. Org. Lett., 2008, 10: 4935-4938
[65] Myles L, Gore R, Špulák M, Gathergood N, Connon S J. Green Chem., 2010, 12: 1157-1162
[66] Chakraborti A K, Roy S R. J. Am. Chem. Soc., 2009, 131: 6902-6903
[67] López I, Bravo J L, Caraballo M, Barneto J L, Silvero G. Tetrahedron Lett., 2011, 52: 3339-3341
[68] Wang S S, Liu W, Wan Q X, Liu Y. Green Chem., 2009, 11: 1589-1594
[69] Qiao Y X, Hou Z S, Li H, Hu Y, Feng B, Wang X R, Hua L, Huang Q F. Green Chem., 2009, 11: 1955-1960
[70] Baj S, Bech M, Gibas M. Appl. Catal. A: Gen., 2012, 433/434: 197-205
[71] Zhang P F, Gong Y T, Lv Y Q, Guo Y, Wang Y, Wang C M, Li H R. Chem. Commun., 2012, 48: 2334-2336
[72] Deng F G, Hu B, Sun W, Chen J, Xia C G. Dalton Trans., 2007, 4262-4267
[73] Lv Z G, Wang H S, Li J, Guo Z M. Res. Chem. Intermed., 2010, 36: 1027-1035
[74] Stricker M, Linder T, Oelkers B, Sundermeyer J. Green Chem., 2010, 12: 1589-1598
[75] Song H Y, Li Z, Chen J, Xia C G. Catal. Lett., 2012, 142: 81-86
[76] Sun J M, Fujita S, Arai M. J. Organomet. Chem., 2005, 690: 3490-3497
[77] Zhang S J, Chen Y H, Li F W, Lu X M, Dai W B, Mori R. Catal. Today, 2006, 115: 61-69
[78] Sakakura T, Kohno K. Chem. Commun., 2009, 1312-1330
[79] Zhang Y G, Chan J Y G. Energy Environ. Sci., 2010, 3: 408-417
[80] North M, Pasquale R, Young C. Green Chem., 2010, 12: 1514-1539
[81] Jutz F, Andanson J M, Baiker A. Chem. Rev., 2011, 111: 322-353
[82] Wang J L, Miao C X, Dou X Y, Gao J, He L N. Curr. Org. Chem., 2011, 15: 621-646
[83] Yang Z Z, Zhao Y N, He L N. RSC Adv., 2011, 1: 545-567
[84] Yang Z Z, He L N, Miao C X, Chanfreau S. Adv. Synth. Catal., 2010, 352: 2233-2240
[85] Jiang T, Zhou Y X, Hu S Q, Ma X M, Liang S G, Han B X. J. Mol. Catal. A: Chem., 2008, 284: 52-57
[86] Sun J, Han L J, Cheng W G, Wang J Q, Zhang X P, Zhang S J. ChemSusChem, 2011, 4: 502-507
[87] Wu F, Dou X Y, He L N, Miao C X. Lett. Org. Chem., 2010, 7: 73-78
[88] Zhang S L, Huang Y Z, Jing H W, Yao W X, Yan P. Green Chem., 2009, 11: 935-938
[89] Song Y Y, Jin Q R, Zhang S L, Jing H W, Zhu Q Q. Sci. China-Chem., 2011, 54: 1044-1050
[90] Li J, Wang L G, Shi F, Liu S M, He Y D, Lu L J, Ma X Y, Deng Y Q. Catal. Lett., 2011, 141: 339-346
[91] Wang J Q, Sun J, Shi C Y, Cheng W G, Zhang X P, Zhang S J. Green Chem., 2011, 13: 3213-3217
[92] Yang Z Z, Zhao Y N, He L N, Gao J, Yin Z S. Green Chem., 2012, 14: 519-527
[93] Potdar M K, Mohile S S, Salunkhe M M. Tetrahedron Lett., 2001, 42: 9285-9287
[94] Gu Y L, Zhang J, Duan Z Y, Deng Y Q. Adv. Synth. Catal., 2005, 347: 512-516
[95] Singh V, Kaur S, Sapehiyia V, Singh J, Kad G L. Catal. Commun., 2005, 6: 57-60
[96] Fang D, Cheng J, Gong K, Shi Q R, Liu Z L. Catal. Lett., 2008, 121: 255-259
[97] Das S, Majee A, Hajra A. Green Chem. Lett. Rev., 2011, 4: 349-353
[98] Kore R, Srivastava R. Catal. Commun., 2011, 12: 1420-1424
[99] Khaligh N G. Catal. Sci. Technol., 2012, 2: 1633-1636
[100] Kumar A, Kumar P, Tripathi V D, Srivastava S. RSC Adv., 2012, 2: 11641-11644
[100] Kumar A, Kumar P, Tripathi V D, Srivastava S. RSC Adv., 2012, 2: 11641-11644

[101] Yadav L D S, Singh S, Rai V K. Tetrahedron Lett., 2009, 50: 2208-2212

[102] Rajesh S M, Perumal S, Menéndez J C, Pandian S, Murugesan R. Tetrahedron, 2012, 68: 5631-5636

[103] Zhi H Z, Lv C X, Zhang Q, Luo J. Chem. Commun., 2009, 2878-2880

[104] Fang D, Zhang H B, Liu Z L. J. Heterocycl. Chem., 2010, 47: 63-67

[105] Chen L, Li Y Q, Huang X J, Zheng W J. Heteroatom Chem., 2009, 20: 91-94

[106] Gong K, Fang D, Wang H L, Zhou X L, Liu Z L. Dyes Pigm., 2009, 80: 30-33

[107] Hajipour A R, Ghayeb Y, Sheikhan N, Ruoho A E. Synlett, 2010, 741-744

[108] Patel R, Srivastava V P, Yadav L D S. Synlett, 2010, 1797-1802

[109] Ying A G, Liu L, Wu G F, Chen G, Chen X Z, Ye W D. Tetrahedron Lett., 2009, 50: 1653-1657

[110] Roy S R, Chakraborti A K. Org. Lett., 2010, 12: 3866-3869

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.