English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1102-1112 DOI: 10.7536/PC121119 前一篇   后一篇

• 综述与评论 •

全钒氧化还原液流电池电解液

王刚1, 陈金伟1, 汪雪芹1, 田晶1, 刘效疆2, 王瑞林1*   

  1. 1. 四川大学材料科学与工程学院 成都 610065;
    2. 中国工程物理研究院电子工程研究所 绵阳 621900
  • 收稿日期:2012-11-01 修回日期:2012-12-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 王瑞林 E-mail:rlwang26@yahoo.com.cn
  • 基金资助:

    高等学校博士学科点专项科研基金项目(No. 20110181110003)、四川省科技厅科技支撑项目(No.2013FZ0034)、成都市科技局攻关计划项目(No. 10GGYB380GX-023,10GGYB828GX-023)和中物院-川大联合创新基金项目(No. XTCX2011001)资助

Electrolyte for All-Vanadium Redox Flow Battery

Wang Gang1, Chen Jinwei1, Wang Xueqin1, Tian Jing1, Liu Xiaojiang2, Wang Ruilin1*   

  1. 1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China;
    2. Institute of Electronics Engineering, China Academy of Engineering Physics, Mianyang 621900, China
  • Received:2012-11-01 Revised:2012-12-01 Online:2013-07-25 Published:2013-04-16

近年来,全钒氧化还原液流电池(VRFB)作为一种新型的储能电池备受关注。作为VRFB的核心材料,电解液的制备及优化一直都是研究的热点。高浓度和高稳定性电解液的制备是钒电池的关键技术之一。电解液性能的提高有助于加速VRFB的商业化进程。本文综述了VRFB电解液的研究进展,重点介绍了电解液的制备方法和影响电解液稳定性的因素,简述了电解液中钒离子浓度的分析方法和钒离子的存在形式,最后对电解液的进一步研究和应用前景进行了展望。

In recent years, all-vanadium redox flow battery (VRFB) has been paid much attention as a new type of battery for energy storage. Researchers have been focusing much on production and optimization of vanadium electrolyte solutions used for the key materials in VRFB. Production of high concentration and stability electrolyte is one of key technologies referring to VRFB. Commercialization process can be accelerated with the performance improvement of vanadium electrolyte solutions. The research progress in VRFB electrolyte solutions is summarized in this paper. The preparation methods and influence factors of stability on vanadium electrolyte solutions are mainly introduced, and concentration analysis methods and existence forms of vanadium ions in vanadium electrolyte solutions are also discussed. Moreover, further research and prospects on vanadium electrolyte solutions are presented. Contents
1 Introduction
2 Production of vanadium electrolyte solutions
2.1 Chemical synthesis methods
2.2 Electrolytic synthesis methods
3 Concentration analysis of vanadium electrolyte solutions
4 Research on stability of vanadium ions in vanadium electrolyte solutions
4.1 Supporting electrolyte solutions
4.2 Temperature
4.3 Additives
5 Research on existence forms of vanadium ions in vanadium electrolyte solutions
6 Outlook

中图分类号: 

()

[1] Redox Flow Cell Development and Demonstration Project. US: Department of Energy, NASA TM-79067, 1979. 245-253
[2] Skyllas-Kazacos M, Robins R G. AU 0575247, 1986
[3] Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, Mjalli F S, Saleem M. J. Electrochem. Soc., 2011, 158 (8): R55-R79
[4] Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D W, Lemmon J P, Liu J. Chem. Rev., 2011, 111: 3577-3613
[5] Li L Y, Kim S, Wang W, Vijayakumar M, Nie Z M, Chen B W, Zhang J L, Xia G G, Hu J Z, Graff G, Liu J, Yang Z G. Adv. Energy Mater., 2011, 1 (3): 394-400
[6] 常芳(Chang F), 孟凡明(Meng F M), 陆瑞生(Lu R S). 电源技术 (Chinese Journal of Power Sources), 2006, 130 (10): 860-862
[7] 毛凌波(Mao L B), 张仁元(Zhang R Y), 陈枭(Chen X). 电池工业(Chinese Battery Industry ), 2007, 12 (5): 353-356
[8] Grossmith F, Skyllas-Kazacos M. Membrane Evaluation for Vanadium Radox Cell. In Proc. Electrochem. Soc. Meeting. US: Honolulu, 1987. 23-24
[9] Kazacos M, Skyllas-Kazacos M. J. Electrochem. Soc., 1989, 136 (9): 2759-2760
[10] Kaneko H, Negishi A, Nozaki K, Sato K, Nakahara I. US 5250158, 1991
[11] Skyllas-Kazacos M, Kazacos M, McDermott R V. WO 1989005363, 1988
[12] Skyllas-Kazacos M. US 0241552A1, 2004
[13] 彭声谦(Peng S Q), 许国镇(Xu G Z), 杨华铨(Yang H Q). 无机盐工业 (Inorganic Chemicals Industry), 1997, (1): 3-6
[14] 崔旭梅(Cui X M), 陈孝娥(Chen X E), 王军(Wang J), 赵英涛(Zhao Y T), 李云(Li Y), 凌斌(Ling B). 电源技术 (Chinese Journal of Power Sources), 2008, 132 (10): 690-692
[15] 陈孝娥(Chen X E), 崔旭梅(Cui X M), 王军 (Wang J). 化工进展(Chemical Industry and Engineering Progress), 2012, 31 (6): 1330-1332
[16] 吴雄伟(Wu X W), 彭穗(Peng S), 冯必钧(Feng B J), 山村朝雄(Tomoo Y), 矢野贵(Yano T), 佐藤伊佐務(Isamu S), 刘素琴(Liu S Q), 黄可龙(Huang K L). 无机材料学报 (Journal of Inorganic Materials), 2011, 26 (5): 535-539
[17] Kazacos M, Cheng M, Skyllas-Kazacos M. J. Appl. Electrochem., 1990, (20): 463-467
[18] Menictas C C M, Skyllas-Kazacos M. J. Power Sources, 1993, 45 (1): 43-54
[19] 冯秀丽(Feng X L), 刘联(Liu L), 李晓兵(Li X B), 陈茂斌(Chen M B), 刘效疆(Liu X J). 合成化学 (Chinese Journal of Synthetic Chemistry), 2008, 16 (5): 519-523
[20] Kausar N, Howe R, Skyllas-Kazacos M. J. Appl. Electrochem., 2001, 31 (12): 1327-1332
[21] Skyllas-Kazacos M, Kazacos M. J. Power Sources, 2011, 196: 8822-8827
[22] 彭声谦(Peng S Q), 蔡世明(Cai S M), 许国镇(Xu G Z). 理化检验-化学分册(Physical Testing and Chemical Analysis Part B: Chemical Analysis), 1998, 34 (7): 291-294
[23] 田波(Tian B), 严川伟(Yan C W), 屈庆(Qu Q). 电池(Battery Bimonthly), 2003, 33 (4): 261-263
[24] 陈富于(Chen F Y), 陈晖(Chen H), 侯绍宇(Hou S Y), 刘建国(Liu J G), 严川伟(Yan C W). 光谱学与光谱分析(Spectroscopy and Spectral Analysis), 2011, 31 (10): 2839-2842
[25] Watt-Smith M J, Ridley P, Wills R G A, Shah A A, Walsh F C. J. Chem. Technol. Biotechnol., 2012, 88 (1): 126-138
[26] Tang Z J, Aaron D S, Papandrew A B, Zawodzinski T A Jr. ECS Trans., 2012, 41 (23): 1-9
[27] Rahman F, Skyllas-Kazacos M. J. Power Sources, 2009, 189: 1212-1219
[28] Rahman F, Skyllas-Kazacos M. J. Power Sources, 1998, 72: 105-110
[29] Skyllas-Kazacos M, Peng C, Cheng M. Electrochem. Solid-State Lett., 1999, 3 (2): 121-122
[30] 常芳(Chang F), 崔艳华(Cui Y H), 李晓兵(Li X B), 兰伟(Lan W), 孟凡明(Meng F M). 化学研究与应用 (Chemical Research and Application), 2006, (7): 866-869
[31] Iwasa S, Wei Y, Fang B, Arai T, Kumagai M. 电池(Battery Bimonthly), 2003, 33 (6): 339-341
[32] Oriji G, Katayama Y, Miura T. Electrochim. Acta, 2004, 49 (19): 3091-3095
[33] Vijayakumar M, Li L Y, Graff G, Liu J, Zhang H M, Yang Z G, Hu J Z. J. Power Sources, 2011, 196: 3669-3672
[34] Shi F, Zou J H, Lu H M, Yuan Y. Materials Processing and Energy Materials. Hoboken, New Jersey: John Wiley & Sons, Inc., 2011, 1: 473-480
[35] Liu Q H, Sleightholme A E S, Shikle A A, Li Y D, Thompson L T. Electrochem. Commun., 2009, 11: 2312-2315
[36] Kim S, Vijayakumar M, Wang W, Zhang J L, Chen B W, Nie Z M, Chen F, Hu J Z, Li L Y, Yang Z G. Phys. Chem. Chem. Phys., 2011, 13: 18186-18193
[37] Peng S, Wang N F, Wu X J, Liu S Q, Fang D, Liu Y N, Huang K L. Int. J. Electrochem. Sci., 2012, 7: 643-649
[38] Skyllas-Kazacos M. AU8800472, 1989
[39] Skyllas-Kazacos M, Menictas C. J. Electrochem. Soc., 1996, 143 (4): L86-L88
[40] Vijayakumar M, Burton S D, Huang C, Li L Y, Yang Z G, Graff G L, Liu J, Hu J Z, Skyllas-Kazacos M. J. Power Sources, 2010, 195: 7709-7717
[41] Kazacos M, Skyllas-Kazacos M. US 7078123B2, 2006
[42] Skyllas-Kazacos M. US 61434437, 2000
[43] Skyllas-Kazacos M, Kazacos M, Mohammed A. WO 9512219A1, 1994
[44] 崔艳华(Cui Y H), 孟凡明(Meng F M). 电源技术(Chinese Journal of Power Sources), 2000, 24 (6): 356-358
[45] 久畑满(Kubata M), 中石博之(Nakaishi H), 德田信幸(Tokuda N). CN1515045-A, 2004
[46] Kubata M, Nakaishi H, Tokuda N. US 7258947, 2007
[47] Tanaka Y, Hrikawa K, Mita M, Tokuda N, Kubata M. US 6613298, 2003
[48] Zhang J L, Li L Y, Nie Z M, Chen B W, Vijayakumar M, Kim S, Wang W, Schwenzer B, Liu J, Yang Z G. J. Appl. Electrohem., 2011, 41 (10): 1215-1221
[49] Huang F, Zhao Q, Luo C H, Wang G X, Yan K P, Luo D M. Chinese Sci. Bull., 2012, 57 (32): 4237-4243
[50] Kazacos M, Skyllas-Kazacos M. US 6468688B2, 2002
[51] Skyllas-Kazacos M, Kazacos M. US 6562514, 2003
[52] Li S, Huang K L, Liu S Q, Fang D, Wu X W, Lu D, Wu T. Electrochim. Acta, 2011, 56 (16): 5483-5487
[53] Wu X J, Liu S Q, Wang N F, Peng S, He Z X. Electrochim. Acta, 2012, 78: 475-482
[54] Jia Z J, Wang B G, Song S Q, Chen X. J. Electrochem. Soc., 2012, 159 (6): A843-A847
[55] 吴雪文(Wu X W), 刘素琴(Liu S Q), 黄可龙(Huang K L). 无机材料学报(Journal of Inorganic Materials), 2010, 25 (6): 641-645
[56] Chang F, Hu C W, Liu X J, Liu L, Zhang J W. Electrochim. Acta, 2012, 60: 334-338
[57] 李梦楠(Li M N), 谢晓峰(Xie X F), 杨春(Yang C), 王金海(Wang J H), 王树博(Wang S B), 尚玉明(Shang Y M). 化工学报(Journal of Chemical Industry and Engineering(China)), 2011, 62 (S2): 135-139
[58] Peng S, Wang N F, Gao C, Lei Y, Liang X X, Liu S Q, Liu Y N. Int. J. Electrochem. Sci., 2012, 7: 4314-4321
[59] Peng S, Wang N F, Gao C, Lei Y, Liang X X, Liu S Q, Liu Y N. Int. J. Electrochem. Sci., 2012, 7: 4388-4396
[60] Sum E, Skyllas-Kazacos M. J. Power Sources, 1985, 15 (2/3): 179-190
[61] Fabjan C, Garche J, Harrer B, Jörissen L, Kolbeck C, Philippi F, Tomazic G, Wagner F. Electrochim. Acta, 2001, 47 (5): 825-831
[62] Vijayakumar M, Li L Y, Nie Z, Yang Z G, Hu J Z. Phys. Chem. Chem. Phys., 2012, 14: 10233-10242
[63] 吴雄伟(Wu X W), 李厦(Li S), 黄可龙(Huang K L), 丁正平(Ding Z P), 姜志成(Jiang Z C), 刘素琴(Liu S Q), 李晓刚(Li X G). 化学学报(Acta Chimica Sinica), 2011, 69 (16): 1858-1864
[64] Kear G, Shah A A, Walsh F C. Int. J. Energy Res., 2012, 36: 1105-1120
[65] Zhang H M. ECS Trans., 2010, 28 (22): 1-5

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[4] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[5] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[6] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[7] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[8] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[9] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[10] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[13] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[14] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[15] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
阅读次数
全文


摘要

全钒氧化还原液流电池电解液