English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1208-1218 DOI: 10.7536/PC121118 前一篇   后一篇

• 综述与评论 •

三磷酸腺苷结合盒式转运体的分子模拟

常姗燕, 刘夫锋*   

  1. 天津大学化工学院生物工程系 系统生物工程教育部重点实验室 天津 300072
  • 收稿日期:2012-11-01 修回日期:2013-02-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 刘夫锋 E-mail:fufengliu@tju.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB724705)、国家自然科学基金青年科学基金项目(No.20906068)和天津市自然科学基金项目(No.10JCYBJC04500)资助

Molecular Simulations of ATP-Binding Cassette Transporters

Chang Shanyan, Liu Fufeng*   

  1. Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2012-11-01 Revised:2013-02-01 Online:2013-07-25 Published:2013-04-16

三磷酸腺苷结合盒式(ATP binding cassete, ABC)转运体是一类与生物体的生理过程和疾病密切相关的膜蛋白,它们利用水解ATP释放的能量实现底物的跨膜转运。虽然研究者已对ABC转运体进行了广泛而深入的研究,但是由于ABC转运体结构的复杂性,导致许多实验技术在ABC转运体的研究中受到较大限制。分子模拟技术可以弥补实验技术的不足,已成为不可或缺的研究工具。本文综述了近年来分子模拟技术同源模建、分子对接和分子动力学模拟在ABC转运体的三维结构模建,底物结合位点确定以及构象转换分子机理的解析等研究领域的最新进展。最后总结了分子模拟技术在ABC转运体研究中所遇到的挑战和拟解决办法。

The ATP-binding cassette (ABC) transporters are integral membrane proteins that can use the energy provided by ATP hydrolysis to actively drive substrates across cell membranes. ABC transporters are linked to many important physiological processes and human diseases. Although many researches have been done, some experimental methods have a lot of restrictions on them because of their complex structures. However, molecular simulations are complements to experimental methods and become indispensable research tools. In this paper, the recent development of the applications of the molecular simulation techniques (e.g., homology modeling, molecular docking and molecular dynamics simulation) on the research of ABC transporters is reviewed. It includes that 3D structures of ABC transporters are built using homology modeling, the binding sites of ABC transporters are identified using molecular docking, and the molecular mechanism of the conformational transition of ABC transporters are probed using molecular dynamics simulations. Finally, the challenges and the developing prospects are proposed and listed at the end of this paper. Contents
1 Introduction
2 Homology modeling of ABC transporters
2.1 Fundamentals of homology modeling
2.2 Building 3D structures of ABC transporters
3 Molecular docking studies of ABC transporters
3.1 Fundamentals of molecular docking
3.2 Molecular docking studies on human P-gp
4 Molecular dynamics simulations of ABC transporters
4.1 Fundamentals of MD simulations
4.2 Conventional MD simulations of ABC transporters
4.3 Targeted MD simulations of ABC transporters
4.4 Steered MD simulations of ABC transporters
5 Conclusions and outlooks

中图分类号: 

()

[1] Higgins C F, Haag P D, Nikaido K, Ardeshir F, Garcia G, Ames G F. Nature, 1982, 298(5876): 723-727
[2] Overduin P, Boos W, Tommassen J. Mol. Microbiol., 1988, 2(6): 767-775
[3] Riordan J R, Rommens J M, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J L, Drumm M L, Iannuzzi M C, Collins F S, Tsui L C. Science, 1989, 245(4922): 1066-1073
[4] Hiles I D, Gallagher M P, Jamieson D J, Higgins C F. J. Mol. Biol., 1987, 195(1): 125-142
[5] Gilson E, Nikaido H, Hofnung M. Nucleic. Acids Res., 1982, 10(22): 7449-7458
[6] Gros P, Croop J, Housman D. Cell, 1986, 47(3): 371-380
[7] Higgins C F. Annu. Rev. Cell Biol., 1992, 8: 67-113
[8] Higgins C F, Hiles I D, Salmond G P C, Gill D R, Downie J A, Evans I J, Holland I B, Gray L, Buckel S D, Bell A W, Hermodson M A. Nature, 1986, 323(6087): 448-450
[9] Jones P M, George A M. Cell. Mol. Life Sci., 2004, 61(6): 682-699
[10] Davidson A L, Shuman H A, Nikaido H. Proc. Nat. Acad. Sci. U. S. A., 1992, 89(6): 2360-2364
[11] Friedrich M J, de Veaux L C, Kadner R J. J. Bacteriol., 1986, 167(3): 928-934
[12] Juliano R L, Ling V. Biochim. Biophys. Acta, 1976, 455(1): 152-162
[13] Ward A, Reyes C L, Yu J, Roth C B, Chang G. Proc. Nat. Acad. Sci. U. S. A., 2007, 104(48): 19005-19010
[14] Dawson R J, Locher K P. Nature, 2006, 443(7108): 180-185
[15] Oldham M L, Davidson A L, Chen J. Current Opinion in Structural Biology, 2008, 18(6): 726-733
[16] Longley D B, Johnston P G. J. Pathol., 2005, 205(2): 275-292
[17] Higgins C F, Linton K J. Nat. Struct. Mol. Biol., 2004, 11(10): 918-926
[18] Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O'Donnell N, Dawson D C, Sansom M S. Biochemistry, 2012, 51(11): 2199-2212
[19] Sauna Z E, Ambudkar S V. Mol. Cancer Ther., 2007, 6(1): 13-23
[20] Aller S G, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell P M, Trinh Y T, Zhang Q, Urbatsch I L, Chang G. Science, 2009, 323(5922): 1718-1722
[21] Parveen Z, Stockner T, Bentele C, Pferschy S, Kraupp M, Freissmuth M, Ecker G F, Chiba P. Mol. Pharmacol., 2011, 79(3): 443-452
[22] Colabufo N A, Berardi F, Perrone M G, Capparelli E, Cantore M, Inglese C, Perrone R. Curr. Top. Med. Chem., 2010, 10(17): 1703-1714
[23] Zou P, Bortolus M, McHaourab H S. J. Mol. Biol., 2009, 393(3): 586-597
[24] Loo T W, Bartlett M C, Clarke D M. Biochemistry, 2011, 50(5): 672-685
[25] Verhalen B, Wilkens S. J. Biol. Chem., 2011, 286(12): 10476-10482
[26] Doshi R, Woebking B, van Veen H W. Proteins, 2010, 78(14): 2867-2872
[27] Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano J R, Landstrom A, Sansom M, Dawson D C. Biochemistry, 2009, 48(42): 10078-10088
[28] Scheraga H A, Khalili M, Liwo A. Annu. Rev. Phys. Chem., 2007, 58: 57-83
[29] Shinoda W, DeVane R, Klein M L. Curr. Opin. Struct. Biol., 2012, 22(2): 175-186
[30] Zhang N, Liu F F, Dong X Y, Sun Y. J. Phys. Chem. B, 2012, 116(24): 7040-7047
[31] Liu F F, Dong X Y, He L, Middelberg A P, Sun Y. J. Phys. Chem. B, 2011, 115(41): 11879-11887
[32] Liu F F, Dong X Y, Sun Y. J. Mol. Graph. Model., 2008, 27(4): 421-429
[33] Liu F F, Ji L, Dong X Y, Sun Y. J. Phys. Chem. B, 2009, 113(32): 11320-11329
[34] Liu F F, Ji L, Zhang L, Dong X Y, Sun Y. J. Chem. Phys., 2010, 132(22): art. no. 3453713
[35] Bellamy W T. Annu. Rev. Pharmacool. Toxicol., 1996, 36: 161-183
[36] Kaczanowski S, Zielenkiewicz P. Theor. Chem. Acc., 2010, 125(3): 643-650
[37] Ginalski K. Curr. Opin. Struct. Biol., 2006, 16(2): 172-177
[38] Ogawa H, Toyoshima C. Proc. Nat. Acad. Sci. U. S. A., 2002, 99(25): 15977-15982
[39] Marti-Renom M A, Stuart A C, Fiser A, Sanchez R, Melo F, Sali A. Annu. Rev. Biophys. Biomol. Struct., 2000, 29: 291-325
[40] Jin M S, Oldham M L, Zhang Q, Chen J. Nature, 2012, 490(7421): 566-569
[41] Klepsch F, Ecker G F. Mol. Inf., 2010, 29(4): 276-286
[42] Kerr I D, Jones P M, George A M. FEBS J, 2010, 277(3): 550-563
[43] Ravna A W, Sylte I, Sager G. Theor. Biol. Med. Modell., 2007, 4: art. no. 33
[44] Globisch C, Pajeva I K, Wiese M. ChemMedchem, 2008, 3(2): 280-295
[45] Mandal D, Moitra K, Ghosh D, Xia D, Dey S. Biochemistry, 2012, 51(13): 2852-2866
[46] Wise J G. Biochemistry, 2012, 51(25): 5125-5141
[47] Ravna A, Sylte I, Sager G. Theor. Biol. Med. Modell., 2009, 6(1): art. no. 20
[48] Pajeva I K, Globisch C, Wiese M. FEBS J., 2009, 276(23): 7016-7026
[49] Tarcsay A, Keseru G M. Future Med. Chem., 2011, 3(3): 297-307
[50] Klepsch F, Chiba P, Ecker G F. Drug Future, 2009, 34: 164-164
[51] O'Mara M L, Tieleman D P. FEBS Lett., 2007, 581(22): 4217-4222
[52] Becker J P, Depret G, Van Bambeke F, Tulkens P M, Prevost M. BMC Struct. Biol., 2009, 9: 3
[53] Sakurai A, Onishi Y, Hirano H, Seigneuret M, Obanayama K, Kim G, Liew E L, Sakaeda T, Yoshiura K I, Niikawa N, Sakurai M, Ishikawa T. Biochemistry, 2007, 46(26): 7678-7693
[54] Stockner T, de Vries S J, Bonvin A, Ecker G F, Chiba P. FEBS J., 2009, 276(4): 964-972
[55] Mornon J P, Lehn P, Callebaut I. Cell Mol. Life Sci., 2008, 65(16): 2594-2612
[56] Serohijos A W, Hegedus T, Aleksandrov A A, He L, Cui L, Dokholyan N V, Riordan J R. Proc. Nat. Acad. Sci. U. S. A., 2008, 105(9): 3256-3261
[57] Gilson M K, Zhou H X. Annu. Rev. Biophys. Biomol. Struct., 2007, 36(1): 21-42
[58] Kitchen D B, Decornez H, Furr J R, Bajorath J. Nat. Rev. Drug. Discov., 2004, 3(11): 935-949
[59] Brooijmans N, Kuntz I D. Annu. Rev. Biophys. Biomol. Struct., 2003, 32(1): 335-373
[60] Chen L, Li Y, Yu H, Zhang L, Hou T. Drug Discovery Today, 2012, 17(7/8): 343-351
[61] Dolghih E, Bryant C, Renslo A R, Jacobson M P. PLoS Comput. Biol., 2011, 7(6): art. no. e1002083
[62] Ohnuma S, Chufan E, Nandigama K, Jenkins L M, Durell S R, Appella E, Sauna Z E, Ambudkar S V. Biochemistry, 2011, 50(18): 3724-3735
[63] Klepeis J L, Lindorff-Larsen K, Dror R O, Shaw D E. Curr. Opin. Struct. Biol., 2009, 19(2): 120-127
[64] Hoover W G. Annu. Rev. Phys. Chem., 1983, 34(1): 103-127
[65] Wen P C, Tajkhorshid E. Biophys J, 2008, 95(11): 5100-5110
[66] Wieczorek G, Zielenkiewicz P. Journal of Cystic Fibrosis, 2008, 7(4): 295-300
[67] Jones P M, George A M. Proc. Nat. Acad. Sci. U. S. A., 2002, 99(20): 12639-12644
[68] Jones P M, George A M. J. Biol. Chem., 2007, 282(31): 22793-22803
[69] Jones P M, George A M. Proteins, 2009, 75(2): 387-396
[70] Jones P M, George A M. J. Phys. Chem. A, 2012, 116(11): 3004-3013
[71] Senior A E, al-Shawi M K, Urbatsch I L. FEBS Lett, 1995, 377(3): 285-289
[72] Oliveira A S F, Baptista A M, Soares C M. J. Phys. Chem. B, 2010, 114(16): 5486-5496
[73] Damas J M, Oliveira A S F, Baptista A M, Soares C M. Protein Sci., 2011, 20(7): 1220-1230
[74] Newstead S, Fowler P W, Bilton P, Carpenter E P, Sadler P J, Campopiano D J, Sansom M S P, Iwata S. Structure, 2009, 17(9): 1213-1222
[75] Becker J P, Van Bambeke F, Tulkens P M, Prevost M. J. Phys. Chem. B, 2010, 114(48): 15948-15957
[76] Oloo E O, Fung E Y, Tieleman D P. J. Biol. Chem., 2006, 281(38): 28397-28407
[77] Oliveira A S, Baptista A M, Soares C M. Proteins, 2011, 79(6): 1977-1990
[78] Oliveira A S F, Baptista A M, Soares C M. Plos Compu. Biol., 2011, 7(8): art. no. e1002128
[79] Oloo E O, Tieleman D P. J. Biol. Chem., 2004, 279(43): 45013-45019
[80] Aittoniemi J, de Wet H, Ashcroft F M, Sansom M S P. Plos Comput. Biol., 2010, 6(4): art. no. e1000762
[81] Gyimesi G, Ramachandran S, Kota P, Dokholyan N V, Sarkadi B, Hegedus T. Biochim. Biophys. Acta-Biomembr., 2011, 1808(12): 2954-2964
[82] Sonne J, Kandt C, Peters G H, Hansen F Y, Jensen M , Tieleman D P. Biophys. J., 2007, 92(8): 2727-2734
[83] Ivetac A, Campbell J D, Sansom M S P. Biochemistry, 2007, 46(10): 2767-2778
[84] Wen P C, Tajkhorshid E. Biophys. J., 2011, 101(3): 680-690
[85] Mehmood S, Domene C, Forest E, Jault J M. Proc. Nat. Acad. Sci. U. S. A., 2012, 109(27): 10832-10836
[86] Ivetac A, Sansom M. Eur. Biophys. J., 2008, 37(4): 403-409
[87] Ferreira R J, Ferreira M-J U, dos Santos D J V A. J. Chem. Theory Comput., 2012, 8(6): 1853-1864
[88] Xu X, Li R B, Ma M, Wang X, Wang Y H, Zou H F. Soft Matter, 2012, 8(10): 2915-2923
[89] Ishikawa T, Sakurai A, Hirano H, Lezhava A, Sakurai M, Hayashizaki Y. Pharmacol. Ther., 2010, 126(1): 69-81
[90] Schlitter J, Engels M, Krüger P. J. Mol. Graphics, 1994, 12(2): 84-89
[91] Sanbonmatsu K Y, Tung C S. J. Struct. Biol., 2007, 157(3): 470-480
[92] Skjaerven L, Reuter N, Martinez A. Future Med. Chem., 2011, 3(16): 2079-2100
[93] Ovchinnikov V, Karplus M. J. Phys. Chem. B, 2012, 116(29): 8584-8603
[94] Weng J W, Fan K N, Wang W N. J. Biol. Chem., 2010, 285(5): 3053-3063
[95] Weng J, Fan K, Wang W. PLoS One, 2012, 7(1): art. no. e30465
[96] Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K. J. Mol. Graph., 2001, 19(1): 13-25
[97] Isralewitz B, Gao M, Schulten K. Curr. Opin. Struct. Biol., 2001, 11(2): 224-230
[98] Sotomayor M, Schulten K. Science, 2007, 316(5828): 1144-1148
[99] Sun T G, Li C H, Chen W Z, Wang C X. J. Mol. Struct.: THEOCHEM, 2009, 905(1/3): 51-58
[100] Liu M, Sun T, Hu J, Chen W, Wang C. Biophys. Chem., 2008, 135(1/3): 19-24
[101] St-Pierre J F, Bunker A, Rog T, Karttunen M, Mousseau N. J. Phys. Chem. B, 2012, 116(9): 2934-2942
[102] Bai S, Zhou R, Liu F F. Acta Phys. Chim. Sin. 2013, 29(2): 439-448
[103] Liu F F, Wang, T, Dong X Y, Sun Y. J. Chromatogra. A. 2007, 1175 (2): 249-258
[104] Tozzini V. Curr. Opin. Struct. Biol., 2005, 15(2): 144-150
[105] Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H. J. Phys. Chem. B, 2007, 111(27): 7812-7824
[106] De Jong D H, Periole X, Marrink S J. J. Chem. Theory Comput., 2012, 8(3): 1003-1014

[1] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[2] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[3] 雷东升, 童慧敏, 张磊, 张星, 张胜利, 任罡. 胆固醇酯转移蛋白在胆固醇酯转移中的结构与功能[J]. 化学进展, 2014, 26(05): 879-888.
[4] 赵丽君, 雷鸣. 甲状腺结合前清蛋白的理论研究[J]. 化学进展, 2014, 26(01): 193-202.
[5] 陈景飞, 郝京诚. 表面活性剂溶液行为的粗粒化模拟[J]. 化学进展, 2012, (10): 1890-1896.
[6] 巫瑞波, 曹泽星*, 张颖凯*. 锌酶的计算模拟:挑战与最新进展[J]. 化学进展, 2012, 24(06): 1175-1184.
[7] 金海晓 严小军 朱鹏. PKA酶及其抑制剂balanol的计算化学*[J]. 化学进展, 2010, 22(05): 993-1001.
[8] 郑燕升,莫倩,孟陆丽,程谦伟. 室温离子液体的分子动力学模拟[J]. 化学进展, 2009, 21(0708): 1427-1433.
[9] 邓平晔,张冬海,田亚峻,陈运法,丁辉. 自组装的分子动力学模拟[J]. 化学进展, 2007, 19(9): 1249-1257.
[10] 叶德举,罗小民,沈建华,朱维良,沈旭,蒋华良,柳红. 先导化合物的发现——整合计算机虚拟筛选、化学合成和生物测试方法*[J]. 化学进展, 2007, 19(012): 1939-1946.
[11] 蔡文生,林翼,邵学广. 团簇研究中的原子间势函数*[J]. 化学进展, 2005, 17(04): 588-596.