English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 577-588 DOI: 10.7536/PC121054 前一篇   后一篇

所属专题: 酶化学

• 模拟酶 •

具有非共价相互作用的金属酶模拟物

王海波, 赵猛, 计亮年, 毛宗万*   

  1. 中山大学化学与化学工程学院生物无机与合成化学教育部重点实验室 广州 510275
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 毛宗万 E-mail:cesmzw@mail.sysu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20831006, 21121061, 21171177, J1103305)和广东省自然科学基金项目(No.9351027501000003)资助

Metalloenzyme Mimics with Non-Covalent Interactions

Wang Haibo, Zhao Meng, Ji Liangnian, Mao Zongwan*   

  1. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-04-24 Published:2013-04-09

金属酶催化的高效性和选择性来源于第一配位环境金属催化中心和第二配位环境非共价相互作用力的协同作用。针对金属催化中心构效关系的研究已有大量报道,相比之下,有关非共价相互作用的研究尚不够充分。金属酶的非共价作用力,包括氢键、静电相互作用、范德华力和疏水相互作用等产生于第二配位环境中的氨基酸残基。阐述第二配位环境中氨基酸残基作用的首要障碍来自于复杂并难以界定的分子内和分子间的相互作用网络。制备包含非共价相互作用的金属酶模拟物是攻克这一难题行之有效的方法,它不但有利于理解非共价相互作用和金属离子之间的协同作用,而且有助于发展可应用于工业、医药、生物技术等领域的仿生催化剂。本文按照非共价弱相互作用的类型,对近期报道的典型案例进行综述。文中阐述了基于简单多齿配体,如联吡啶、三联吡啶、环胺、卟啉等,和基于超分子配体,如功能化的环糊精和杯芳烃等的金属酶模型物。在讨论模型物之前,本文对天然金属酶中的非共价相互作用简略探讨。

Metalloenzyme efficiency and specificity originate from the cooperative roles between the metal-mediated catalysis at the first coordination sphere and the non-covalent interactions at the secondary coordination sphere. While the structures and functions of metal coordination sites have drawn wide researches, the elucidations of the non-covalent interactions have been less assessed. The enzymatic non-covalent interactions in terms of hydrogen bonding, electrostatic attraction, van der Waals force and hydrophobic interaction are produced from the amino acid residues in the secondary coordination sphere. The primary hurdle that hampers the elucidation of the amino acids in the secondary coordination sphere is their complicated intra- and intermolecular interaction networks that are exceptionally difficult to define. A practical approach to circumvent this challenge is to prepare metalloenzyme mimics that include non-covalent interactions. This approach not only opens an avenue to understand the synergism between the non-covalent interactions and the metal ions, but also contributes to the development of biomimetic catalysts applied in industry, pharmaceutics, biotechnology and even wider areas. To make an overview of the recent progresses in this field, this review discusses the representative mimics which are organized according to the interaction categories. The mimics exemplified here include the ones based on the simple multi-dentate ligands like bipyridine, terpyridine, cyclic amine and porphyrin, and the supramolecular ligands like the functionalized cyclodextrins and calixarenes. Prior to the discussions of mimics, the non-covalent interactions of native metalloenzymes are commented.

Contents
1 Introduction
2 Non-covalent interactions in native metalloenzyme
2.1 Hydrolase
2.2 Oxido-reductase
3 Metalloenzyme models involving non-covalent interactions
3.1 Hydrogen bonding
3.2 Electrostatic interaction
3.3 Hydrophobic sphere
4 Conclusion and outlook

中图分类号: 

()

[1] Kirby A J. Angew. Chem. Int. Ed. Engl., 1996, 35: 706-724
[2] Williams D H, Westwell M S. Chem. Soc. Rev., 1998, 27: 57-63
[3] Breslow R. Acc. Chem. Res., 1995, 28: 146-153
[4] Thomas C M, Ward T R. Chem. Soc. Rev., 2005, 34: 337-346
[5] Mancin F, Scrimin P, Tecilla P. Chem. Commun., 2012, 48: 5545-5559
[6] Mill醤 J L. Anticancer Res., 1988, 8: 995-1004
[7] Coleman J E. Annu. Rev. Biophys. Biomol. Struct., 1992, 21: 441-483
[8] Krämer R. Coord. Chem. Rev., 1999, 182: 243-261
[9] Serpersu E H, Shortle D, Mildvan A S. Biochemistry, 1987, 26: 1289-1300
[10] Wolfenden R. Chem. Rev., 2006, 106: 3379-3396
[11] Cho J H, Kim D H, Kim D H, Lee K J, Choi K Y. Biochemistry, 2001, 40: 10197-10203
[12] Yun M, Park C, Kim S, Nam D, Kim S C, Kim D H. J. Am. Chem. Soc., 1992, 114: 2281-2282
[13] Fern醤dez D, Pallar鑣 I, Vendrell J, Avil閟 F X. Biochimie, 2010, 92: 1484-1500
[14] Bukrinsky J T, Bjerrum M J, Kadziola A. Biochemistry, 1998, 37: 16555-16564
[15] Xu D, Guo H. J. Am. Chem. Soc., 2009, 131: 9780-9788
[16] Guengerich F P. Chem. Res. Toxicol., 2001, 14: 611-650
[17] Feiters M C, Rowan A E, Nolte R J M. Chem. Soc. Rev., 2000, 29: 375-384
[18] Nagano S, Cupp-Vickery J R, Poulos T L. J. Biol. Chem., 2005, 280: 22102-22107
[19] Nagano S, Poulos T L. J. Biol. Chem., 2005, 280: 31659-31663
[20] Shook R L, Borovik A S. Inorg. Chem., 2010, 49: 3646-3660
[21] Schlichting I, Berendzen J, Chu K, Stock A M, Maves S A, Benson D E, Sweet R M, Ringe D, Petsko G A, Sligar S G. Science, 2000, 287: 1615-1622
[22] Galinato M G I, Spolitak T, Ballou D P, Lehnert N. Biochemistry, 2010, 50: 1053-1069
[23] Matsu-ura M, Tani F, Nakayama S, Nakamura N, Naruta Y. Angew. Chem. Int. Ed., 2000, 39: 1989-1991
[24] Greenleaf W B, Perry J J P, Hearn A S, Cabelli D E, Lepock J R, Stroupe M E, Tainer J A, Nick H S, Silverman D N. Biochemistry, 2004, 43: 7038-7045
[25] Yikilmaz E, Rodgers D W, Miller A F. Biochemistry, 2006, 45: 1151-1161
[26] Wang J T, Xia Q, Zheng X H, Chen H Y, Chao H, Mao Z W, Ji L N. Dalton Trans., 2010, 39: 2128-2136
[27] Wang J T, Zheng X H, Ji L N, Mao Z W. J. Coord. Chem., 2010, 63: 2440-2449
[28] Sreedhara A, Freed J D, Cowan J A. J. Am. Chem. Soc., 2000, 122: 8814-8824
[29] Wright D J, Jack W E, Modrich P. J. Biol. Chem., 1999, 274: 31896-31902
[30] Feng G, Natale D, Prabaharan R, Mareque-Rivas J C, Williams N H. Angew. Chem. Int. Ed., 2006, 45: 7056-7059
[31] Kinoshita E, Takahashi M, Takeda H, Shiro M, Koike T. Dalton Trans., 2004, 1189-1193
[32] O' Donoghue A, Pyun S Y, Yang M Y, Morrow J R, Richard J P. J. Am. Chem. Soc., 2006, 128: 1615-1621
[33] Borovik A S. Acc. Chem. Res., 2005, 38: 54-61
[34] Borovik A S. Chem. Soc. Rev., 2011, 40: 1870-1874
[35] Mukherjee J, Lucas R L, Zart M K, Powell D R, Day V W, Borovik A S. Inorg. Chem., 2008, 47: 5780-5786
[36] MacBeth C E, Gupta R, Mitchell-Koch K R, Young V G, Lushington G H, Thompson W H, Hendrich M P, Borovik A S. J. Am. Chem. Soc., 2004, 126: 2556-2567
[37] Kendall A J, Zakharov L N, Gilbertson J D. Inorg. Chem., 2010, 49: 8656-8658
[38] Das S, Incarvito C D, Crabtree R H, Brudvig G W. Science, 2006, 312: 1941-1943
[39] Chang C J, Chng L L, Nocera D G. J. Am. Chem. Soc., 2003, 125: 1866-1876
[40] Kovari E, Krämer R. J. Am. Chem. Soc., 1996, 118: 12704-12709
[41] An Y, Tong M L, Ji L N, Mao Z W. Dalton Trans., 2006, 2066-2071
[42] An Y, Liu S D, Deng S Y, Ji L N, Mao Z W. J. Inorg. Biochem., 2006, 100: 1586-1593
[43] Li J H, Wang J T, Hu P, Zhang L Y, Chen Z N, Mao Z W, Ji L N. Polyhedron, 2008, 27: 1898-1904
[44] Li J H, Wang J T, Zhang L Y, Chen Z N, Mao Z W, Ji L N. J. Coord. Chem., 2009, 62: 1775-1783
[45] He J, Hu P, Wang Y J, Tong M L, Sun H, Mao Z W, Ji L N. Dalton Trans., 2008, 3207-3214
[46] An Y, Lin Y Y, Wang H, Sun H Z, Tong M L, Ji L N, Mao Z W. Dalton Trans., 2007, 1250-1254
[47] He J, Sun J, Mao Z W, Ji L N, Sun H. J. Inorg. Biochem., 2009, 103: 851-858
[48] Li J H, Wang J T, Mao Z W, Ji L N. J. Coord. Chem., 2009, 62: 446-455
[49] Li J H, Wang J T, Zhang L Y, Chen Z N, Mao Z W, Ji L N. Inorg. Chim. Acta, 2009, 362: 1918-1924
[50] Liu S, Hamilton A D. Tetrahedron Lett., 1997, 38: 1107-1110
[51] Aït Haddou H, Sumaoka J, Wiskur S L, Folmer-Andersen J F, Anslyn E V. Angew. Chem. Int. Ed., 2002, 41: 4013-4016
[52] Tobey S L, Jones B D, Anslyn E V. J. Am. Chem. Soc., 2003, 125: 4026-4027
[53] Tobey S L, Anslyn E V. J. Am. Chem. Soc., 2003, 125: 14807-14815
[54] Sheng X, Lu X M, Chen Y T, Lu G Y, Zhang J J, Shao Y, Liu F, Xu Q. Chem. Eur. J., 2007, 13: 9703-9712
[55] Aoki S, Iwaida K, Hanamoto N, Shiro M, Kimura E. J. Am. Chem. Soc., 2002, 124: 5256-5257
[56] Tani F, Matsu-ura M, Nakayama S, Ichimura M, Nakamura N, Naruta Y. J. Am. Chem. Soc., 2001, 123: 1133-1142
[57] Cronin L, Walton P H. Chem. Commun., 2003, 1572-1573
[58] Zhao M, Helms B, Slonkina E, Friedle S, Lee D, DuBois J, Hedman B, Hodgson K O, Fr閏het J M J, Lippard S J. J. Am. Chem. Soc., 2008, 130: 4352-4363
[59] Zhou Y H, Mao Z W. Sci. China Ser. B Chem., 2009, 39: 289-300
[60] Breslow R, Dong S D. Chem. Rev., 1998, 98: 1997-2012
[61] Hapiot F, Tilloy S, Monflier E. Chem. Rev., 2006, 106: 767-781
[62] Singleton M L, Reibenspies J H, Darensbourg M Y. J. Am. Chem. Soc., 2010, 132: 8870-8871
[63] Kano K, Kitagishi H, Kodera M, Hirota S. Angew. Chem. Int. Ed., 2005, 44: 435-438
[64] Kano K, Kitagishi H, Dagallier C, Kodera M, Matsuo T, Hayashi T, Hisaeda Y, Hirota S. Inorg. Chem., 2006, 45: 4448-4460
[65] Kitagishi H, Tamaki M, Ueda T, Hirota S, Ohta T, Naruta Y, Kano K. J. Am. Chem. Soc., 2010, 132: 16730-16732
[66] Fu H, Zhou Y H, Chen W L, Deqing Z G, Tong M L, Ji L N, Mao Z W. J. Am. Chem. Soc., 2006, 128: 4924-4925
[67] Zhou Y H, Fu H, Zhao W X, Chen W L, Su C Y, Sun H, Ji L N, Mao Z W. Inorg. Chem., 2007, 46: 734-739
[68] Zhou Y H, Fu H, Zhao W X, Tong M L, Su C Y, Sun H, Ji L N, Mao Z W. Chem. Eur. J., 2007, 13: 2402-2409
[69] Zhou Y H, Zhao M, Sun H, Mao Z W, Ji L N. J. Mol. Catal. A Chem., 2009, 308: 61-67
[70] Zhou Y H, Zhao M, Li J H, Mao Z W, Ji L N. J. Mol. Catal. A Chem., 2008, 293: 59-64
[71] Zhou Y H, Zhao M, Mao Z W, Ji L N. Chem. Eur. J., 2008, 14: 7193-7201
[72] Tang S P, Zhou Y H, Chen H Y, Zhao C Y, Mao Z W, Ji L N. Chem. Asian J., 2009, 4: 1354-1360
[73] Tang S P, Chen S, Wu G F, Chen H Y, Mao Z W, Ji L N. Inorg. Chem. Commun., 2011, 14: 184-188
[74] Zhao M, Zhao C, Jiang X Q, Ji L N, Mao Z W. Dalton Trans., 2012, 41: 4469-4476
[75] Zhao M, Zhang L, Chen H Y, Wang H L, Ji L N, Mao Z W. Chem. Commun., 2010, 46: 6497-6499
[76] Zhao M, Wang H L, Zhang L, Zhao C, Ji L N, Mao Z W. Chem. Commun., 2011, 47: 7344-7346
[77] Hu P, Liu G F, Ji L N, Mao Z W. Chem. Commun., 2012, 48: 5515-5517
[78] S閚鑡ue O, Rager M N, Giorgi M, Reinaud O. J. Am. Chem. Soc., 2001, 123: 8442-8443
[79] Blanchard S, Le Clainche L, Rager M N, Chansou B, Tuchagues J P, Duprat A F, Le Mest Y, Reinaud O. Angew. Chem. Int. Ed., 1998, 37: 2732-2735
[80] LePoul N, Campion M, Douziech B, Rondelez Y, Le Clainche L, Reinaud O, Le Mest Y. J. Am. Chem. Soc., 2007, 129: 8801-8810
[81] LePoul N, Campion M, Izzet G, Douziech B, Reinaud O, Le Mest Y. J. Am. Chem. Soc., 2005, 127: 5280-5281
[82] Molenveld P, Kapsabelis S, Engbersen J F J, Reinhoudt D N. J. Am. Chem. Soc., 1997, 119: 2948-2949
[83] Molenveld P, Engbersen J F J, Reinhoudt D N. Angew. Chem. Int. Ed., 1999, 38: 3189-3192
[84] Cacciapaglia R, Casnati A, Mandolini L, Reinhoudt D N, Salvio R, Sartori A, Ungaro R. J. Am. Chem. Soc., 2006, 128: 12322-12330
[85] Cacciapaglia R, Casnati A, Mandolini L, Peracchi A, Reinhoudt D N, Salvio R, Sartori A, Ungaro R. J. Am. Chem. Soc., 2007, 129: 12512-12520

[1] 刘喆, 张晓岚, 蔡婷, 袁静, 赵昆峰, 何丹农. 用于甲醛催化氧化的锰基催化剂及协同效应的影响[J]. 化学进展, 2019, 31(2/3): 311-321.
[2] 王娟, 刘颖, 张伟德. 碳纳米管/半导体纳米复合材料的光电化学特性及其应用[J]. 化学进展, 2011, 23(8): 1583-1590.
[3] 黄浪欢 王后锦 刘应亮 焦自斌 邵子倍. TiO2与碳纳米管的复合及光催化协同作用*[J]. 化学进展, 2010, 22(05): 867-876.
[4] 唐国涛 王庆伦 廖代正 杨光明. 自旋转换现象及其研究进展*[J]. 化学进展, 2010, 22(0203): 257-264.
[5] 韩业君,陈洪章. 植物细胞壁蛋白与木质纤维素酶解*[J]. 化学进展, 2007, 19(0708): 1153-1158.
[6] 汪洋,陈丰秋,詹晓力,陈飞. 多相选择氧化/氨氧化催化中活性位分离和相间协同作用*[J]. 化学进展, 2006, 18(01): 7-18.
[7] 黄友元,周恒辉,陈继涛,苏光耀,高德淑. 层状嵌锂多元过渡金属氧化物的研究[J]. 化学进展, 2005, 17(03): 406-411.