English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 650-660 DOI: 10.7536/PC121051 前一篇   

• 金属药物 •

无机药物: 问题和解决思路

黄美玲, 武亚玲, 赵攀, 杨晓达*   

  1. 北京大学医学部药学院化学生物学系 100191
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 杨晓达 E-mail:xyang@bjmu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20971008, 21271012)和博士点基金项目(No.20090001110068)资助

Update of Metal-Based Drugs: Problems and Approaches for Solution

Huang Meiling, Wu Yaling, Zhao Pan, Yang Xiaoda*   

  1. Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-04-24 Published:2013-04-09

进入本世纪以来,无机药物及相关基础研究获得巨大的发展,同时也面临着巨大的困难。本文综述了两类金属药物——抗癌金属药物和抗糖尿病钒化合物的研究进展和目前存在的严重瓶颈问题,并提出未来发展应重视下列方面:(1)发现新的金属药物分子机制,在此基础上实现理性药物设计;(2)基于分子机理实现对金属药物毒性的控制;(3)理性设计和建立基于纳米、分子复合物和药物分子转运体的新的金属药物转运体系;(4)发展金属配合物的合成生物学。

From this century, great progresses have been made in the field of metal-based medicine and relevant fundamental researches. However, there are also major problems left to be solved. This review summarized the recent progresses and the bottlenecks of two important metal drugs, anti-cancer platinum/non-platinum drugs and anti-diabetic vanadium compounds. The following aspects are proposed for attentions in the future research: (1) Discover new molecular mechanism of metal drugs for rational design of metal drugs; (2) Control of metal toxicity based on molecular mechanism; (3) Rational metal drug design and metal drug delivery system based on nano materials, molecular complexes and drug transporters; (4) Synthetic biology of metal complexes.

Contents
1 Introduction
2 Anti-cancer compounds
2.1 Drug resistance of cisplatin
2.2 Rational drug design
2.3 Improve bioavailability through drug design and targeted delivery
2.4 Novel anti-cancer strategy: poisoning cell vs prisoning cell
3 Anti-diabetic vanadium compounds
3.1 Mechanisms of pharmacological actions and rational drug design
3.2 Toxicity of vanadium compounds
3.3 Pharmacokinetics of vanadium compounds
4 Conclusions and outlook

中图分类号: 

()

[1] Special issue: Medicinal Inorganic Chemistry. Chemical Review, 1999, 99(9)
[2] Sadler P J Dalton. Transactions themed issue on metal anticancer compounds. Dalton Trans., 2009, (48): 10647-10647
[3] 王夔(Wang K). 化学进展(Progress in Chemistry), 2009, 21(5): 801-802
[4] Thompson K H, Orvig C. Science, 2003, 300: 936-939
[5] Special issue: Metals in Neurodegenerative Disease and Metal Toxicity. Metallomics, 2011, 3(3)
[6] Special issue: Cell Biology of Metals. Biochim. Biophys. Acta, 2012, 1823(9)
[7] Fricker S. Dalton Trans., 2007, (43): 4903-4917
[8] Rosenberg B, VanCamp L, Trosko J E, Mansour V H. Nature, 1969, 222(5191): 385-386
[9] Matos C S, de Carvalho A L, Lopes R P, Marques M. Curr. Med. Chem., 2012, 19(27): 4678-4687
[10] Bergamo A, Gaiddon C, Schellens J H, Beijnen J H, Sava G. J. Inorg. Biochem., 2012, 106(1): 90-99
[11] Hashemy S I, Ungerstedt J S, Avval F Z, Holmgren A. J. Biol. Chem., 2006, 281(16): 10691-10697
[12] Jung Y, Lippard S J. Chem. Rev., 2007, 107(5): 1387-1407
[13] Wang D, Lippard S J. Nat. Rev. Drug Discov., 2005, 4(4): 307-320
[14] Wang X, Guo Z. Chem. Soc. Rev., 2013, 42: 202-224. DOI: 10.1039/C2CS35259A
[15] Hartinger C G, Phillips A D, Nazarov A A. Curr. Top. Med. Chem., 2011, 11(21): 2688-2702
[16] Zhu J, Zhao Y, Zhu Y, Wu Z, Lin M, He W, Wang Y, Chen G, Dong L, Zhang J, Lu Y, Guo Z. Chemistry, 2009, 15(21): 5245-5253
[17] Zerzankova L, Kostrhunova H, Vojtiskova M, Novakova O, Suchankova T, Lin M, Guo Z, Kasparkova J, Brabec V. Biochem. Pharmacol., 2010, 80(3): 344-351
[18] Hochreuther S, van Eldik R. Inorg. Chem., 2012, 51(5): 3025-3038
[19] Muchova T, Quintal S M, Farrell N, Brabec V, Kasparkova J J. Biol. Inorg. Chem., 2012, 17(2): 239-245
[20] Zhao Y, He W, Shi, P, Zhu J, Qiu L, Lin L, Guo Z. Dalton Trans., 2006, (22): 2617-2619
[21] Fan D, Yang X, Wang X, Zhang S, Mao J, Ding J, Lin L, Guo Z. J. Biol. Inorg. Chem., 2007, 12(5): 655-665
[22] 陈禹(Chen Y), 杜可杰(Du K J), 巢晖(Chao H), 计亮年(Ji L N). 化学进展(Progress in Chemistry), 2009, 21(5): 836-844
[23] Tan C, Liu J, Chen L, Shi S, Ji L. J. Inorg. Biochem., 2008, 102(8): 1644-1653
[24] Liu Y J, Zeng C H, Yao J H, Wu F H, He LX, Huang H L. Chem. Biodivers., 2010, 7(7): 1770-1783
[25] Chen T, Liu Y, Zheng W J, Liu J, Wong Y S. Inorg. Chem., 2010, 49(14): 6366-6368
[26] Hu W, Luo Q, Ma X, Wu K, Liu J, Chen Y, Xiong S, Wang J, Sadler J, Wang F. Chemistry, 2009, 15(27): 6586-6594
[27] Wu C H, Wu D H, Liu X, Guoyiqibayi G, Guo D D, Lv G, Wang X M, Yan H, Jiang H, Lu Z H. Inorg. Chem., 2009, 48(6): 2352-2354
[28] Chen J, Chen L, Liao S, Zheng K, Ji L. J. Phys. Chem. B, 2007, 111(27): 7862-7869
[29] Che C M, Siu F M. Curr. Opin. Chem. Biol., 2010, 14(2): 255-261
[30] Dalla Via L, Nardon C, Fregona D. Future Med. Chem., 2012, 4(4): 525-543
[31] Yan J J, Chow A L F, Leung C H, Sun R W Y, Ma D L, Che C M. Chem. Commun., 2010, 46(22): 3893-3895
[32] Sun R W Y, Yu W Y, Sun H, Che C M. Chembiochem, 2004, 5(9): 1293-1298
[33] To Y F, Sun R W Y, Chen Y, Chan V S, Yu W Y, Tam K., Che C M, Lin C L. Int. J. Cancer, 2009, 124(8): 1971-1979
[34] Wang Y, He Q Y, Sun R W Y, Che C M, Chiu J F. Eur. J. Pharmacol., 2007, 554(2/3): 113-122
[35] Tu S, Sun R W Y, Lin M C, Tao Cui J, Zou B, Gu Q, Kung H F, Che C M, Wong B C. Cancer, 2009, 115(19): 4459-4469
[36] Wang Y, He Q Y, Che C M, Tsao S W, Sun R W Y, Chiu J F. Biochem. Pharmacol., 2008, 75(6): 1282-1291
[37] Dhar S, Lippard S J. Proc. Natl. Acad. Sci. U. S. A., 2009, 106(52): 22199-22204
[38] Mao J, Zhang Y, Zhu J, Zhang C, Guo Z. Chem. Commun., 2009, (8): 908-910
[39] Westendorf A F, Woods J A, Korpis K, Farrer N J, Salassa L, Robinson K, Appleyard V, Murray K, Grunert R, Thompson A M, Sadler J, Bednarski J. Mol. Cancer Ther., 2012, 11(9): 1894-1904
[40] Chen Z F, Liu Y C, Liu L M, Wang H S, Qin S H, Wang B L, Bian H D, Yang B, Fun H K, Liu H G, Liang H, Orvig C. Dalton Trans., 2009, (2): 262-272
[41] Liu Y C, Chen Z F, Liu L M, Peng Y, Hong X, Yang B, Liu H G, Liang H, Orvig C. Dalton Trans., 2009, (48): 10813-10823
[42] Chen Z F, Tan M X, Liu L M, Liu Y C, Wang H S, Yang B, Peng Y, Liu H G, Liang H, Orvig C. Dalton Trans., 2009, (48): 10824-10833
[43] Fricker S. Anticancer Agents Med. Chem., 2011, 11(10): 940-952
[44] Zhang S, Lovejoy K S, Shima J E, Lagpacan L L, Shu Y, Lapuk A, Chen Y, Komori T, Gray J W, Chen X, Lippard S J, Giacomini K M. Cancer Res., 2006, 66(17): 8847-8857
[45] Lovejoy K S, Todd R C, Zhang S, McCormick M S, D'Aquino J A, Reardon J T, Sancar A, Giacomini K M, Lippard S J. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(26): 8902-8907
[46] Yang Z, Wang X, Diao H, Zhang J, Li H, Sun H, Guo Z. Chem. Commun., 2007, (33): 3453-3455
[47] Xing R, Wang X, Yan L, Zhang C, Yang Z, Guo Z. Dalton Trans., 2009, (10): 1710-1713
[48] Xing R, Wang X, Zhang C, Zhang Y, Wang Q, Yang Z, Guo Z. J. Inorg. Biochem., 2009, 103(7): 1039-1044
[49] Huang C, Neoh K G, Xu L, Kang E T, Chiong E. Biomacromolecules, 2012, 13(8): 2513-2520
[50] Wahab R, Yang Y B, Umar A, Singh S, Hwang I H, Shin H S, Kim Y S. J. Biomed. Nanotechnol., 2012, 8(3): 424-431
[51] Yang J, Sun X, Mao W, Sui M, Tang J, Shen Y. Mol. Pharm., 2012, 9(10): 2793-2800
[52] Min Y, Mao C Q, Chen S, Ma G., Wang J, Liu Y. Angew. Chem. Int. Ed. Engl., 2012, 51(27): 6742-6747
[53] Min Y, Mao C, Xu D, Wang J, Liu Y. Chem. Commun., 2010, 46(44): 8424-8426
[54] Lopez T, Islas E O, Alvarez Lemus M A, Gonzalez R D. Nano Rev., 2011, DOI: 10, 3402/nano. v2i0.5461
[55] Graf N, Lippard S J. Adv. Drug. Deliv. Rev., 2012, 64(11): 993-1004
[56] Xue Z, Lin M, Zhu J, Zhang J, Li Y, Guo Z. Chem. Commun., 2010, 46(8): 1212-1214
[57] 郑杰(Zheng J). 肿瘤的细胞和分子生物学(Cellular Molecular Biology of Cancer). 上海科学技术出版社(Shanghai Scientific and Technical Publishers), 2011. 150-159
[58] Chen C, Xing G., Wang J, Zhao Y, Li B, Tang J, Jia G., Wang T, Sun J, Xing L, Yuan H, Gao Y, Meng H, Chen Z, Zhao F, Chai Z, Fang X. Nano Lett., 2005, 5(10): 2050-2057
[59] Liu Y, Jiao F, Qiu Y, Li W, Qu Y, Tian C, Li Y, Bai R, Lao F, Zhao Y, Chai Z, Chen C. Nanotechnology, 2009, 20(41): art. no. 415102
[60] Yang D, Zhao Y, Guo H, Li Y, Tewary P, Xing G., Hou W, Oppenheim J J, Zhang N. ACS Nano, 2010, 4(2): 1178-1186
[61] Wang B, Yang D, Sun B, Wei X, Guo H, Liu X, Ying G, Niu R, Zhang N, Ma Y. J. Nanosci. Nanotechnol., 2011, 11(3): 2321-2329
[62] Liang X J, Meng H, Wang Y, He H, Meng J, Lu J, Wang C, Zhao Y, Gao X, Sun B, Chen C, Xing G, Shen D, Gottesman M M, Wu Y, Yin J J, Jia L. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(16): 7449-7454
[63] Goldwaser I, Gefel D, Gershonov E, Fridkin M, Shechter Y. J. Inorg. Biochem., 2000, 80(1/2): 21-25
[64] Evangelou A M. Crit. Rev. Oncol. Hematol., 2002, 42(3): 249-265
[65] John C. http: //www. fiercebiotech. com/story/akesis- shutters- program-files-chap-7/ (2009-01-22)
[66] Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Acta Biochim. Pol., 2012, 59(2): 195-200
[67] Willsky G R, Chi L H, Liang Y, Gaile D, Hu Z, Crans D C. Physiol. Genomics, 2006, 26(3): 192-201
[68] Wei D, Li M, Ding W. J. Biol. Inorg. Chem., 2007, 12(8): 1265-1273
[69] Hwang S L, Chang H W. Mol. Cell. Biochem., 2012, 360(1/2): 401-409
[70] Gao Z, Zhang C, Yu S, Yang X, Wang K. J. Biol. Inorg. Chem., 2011, 16(5): 789-798
[71] Thompson K H, Lichter J, LeBel C, Scaife M C, McNeill J H, Orvig C. J. Inorg. Biochem., 2009, 103(4): 554-558
[72] Thompson K H, Orvig C. J. Inorg. Biochem., 2006, 100(12): 1925-1935
[73] Fukui K, Fujisawa Y, OhyaNishiguchi H, Kamada H, Sakurai H. J. Inorg. Biochem., 1999, 77(3/4): 215-224
[74] Esbak H, Enyedy E A, Kiss T, Yoshikawa Y, Sakurai H, Garribba E, Rehder D. J. Inorg. Biochem., 2009, 103(4): 590-600
[75] Adachi Y, Yoshida J, Kodera Y, Katoh A, Takada J, Sakurai H. J. Med. Chem., 2006, 49(11): 3251-3256
[76] Buglyo P, Crans D C, Nagy E M, Lindo R L, Yang L, Smee J J, Jin W, Chi L H, Godzala Iii M E, Willsky G R. Inorg. Chem., 2005, 44(15): 5416-5427
[77] Li M, Ding W, Smee J J, Baruah B, Willsky G R, Crans D C. Biometals, 2009, 22(6): 895-905
[78] Smee J J, Epps J A, Ooms K, Bolte S E, Polenova T, Baruah B, Yang L, Ding W, Li M, Willsky G R, la Cour A, Anderson O, Crans D C. J. Inorg. Biochem., 2009, 103(4): 575-584
[79] Xie M J, Yang X D, Liu W, Yan S, Meng Z H. J. Inorg. Biochem., 2010, 104(8): 851-857
[80] Li M, Wei D, Ding W, Baruah B, Crans D C. Biol. Trace. Elem. Res., 2008, 121(3): 226-232
[81] Wei Y, Zhang C, Zhao P, Yang X, Wang K. J. Inorg. Biochem., 2011, 105(8): 1081-1085
[82] Wei Y B, Yang X D. Biometals, 2012, 25(6): 1261-1268
[83] Yuan C, Lu L, Gao X, Wu Y, Guo M, Li Y, Fu X, Zhu M. J. Biol. Inorg. Chem., 2009, 14(6): 841-851
[84] Lu L, Wang S, Zhu M, Liu Z, Guo M, Xing S, Fu X. Biometals, 2010, 23(6): 1139-1147
[85] Lu L, Yue J, Yuan C, Zhu M, Han H, Liu Z, Guo M. J. Inorg. Biochem., 2011, 105(10): 1323-1328
[86] Han H, Lu L, Wang Q, Zhu M, Yuan C, Xing S, Fu X. Dalton Trans., 2012, 41(36): 11116-11124
[87] Purnick E, Weiss R. Nat. Rev. Mol. Cell. Biol., 2009, 10(6): 410-422
[88] Keasling J D. ACS Chem. Biol., 2008, 3(1): 64-76
[89] Mao X, Zhang L, Xia Q, Sun Z, Zhao X, Cai H, Yang X, Xia Z, Tang Y. Biometals, 2008, 21(5): 563-570
[90] Cui B, Han L, Qu J, Lv Y. Biol. Trace Elem. Res., 2009, 131(2): 186-191
[91] Fu Y, Wang Q, Yang X G, Yang X D, Wang K. J. Biol. Inorg. Chem., 2008, 13(6): 1001-1009
[92] Wang Q, Liu T T, Fu Y, Wang K, Yang X G. J. Biol. Inorg. Chem., 2010, 15(7): 1087-1097
[93] Tang H, Sun Y, Xiu Q, Lu H, Han H. Arch. Biochem. Biophys., 2007, 468(1): 92-99
[94] Yang X G, Yang X D, Yuan L, Wang K, Crans D C. Pharm. Res., 2004, 21(6): 1026-1033
[95] Zhang Y, Yang X D, Wang K, Crans D C. J. Inorg. Biochem., 2006, 100(1): 80-87
[96] Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K. J. Inorg. Biochem., 2010, 104(4): 371-378
[97] Aureliano M. World. J. Biol. Chem., 2011, 2(10): 215-225
[98] Ramos S, Moura J J, Aureliano M. Metallomics, 2012, 4(1): 16-22
[99] Boulassel B, Sadeg N, Roussel O, Perrin M, Belhadj-Tahar H. Forensic Sci. Int., 2011, 206(1/3): e79-e81
[100] Zhao Y B, Shi Z, Ye L H, Liu H X, Yang X D, Wang K. J. Chinese Pharm. Sci., 2009, 18: 225-231
[101] Fraqueza G, de Carvalho L A E B, Marques M, Maia L, Ohlin C A, Casey W H, Aureliano M. Dalton Trans., 2012, 41(41): 12749-12758
[102] Azami K, Tabrizian K, Hosseini R, Seyedabadi M, Shariatpanahi M, Noorbakhsh F, Kebriaeezadeh A, Ostad S N, Sharifzadeh M. Neurotoxicology, 2012, 33(1): 44-52
[103] Zhang L, Zhang Y, Xia Q, Zhao X M, Cai HX, Li D W, Yang X D, Wang K, Xia Z L. Food Chem. Toxicol., 2008, 46(9): 2996-3002
[104] Clark T A, Heyliger C E, Kopilas M, Edel A L, Junaid A, Aguilar F, Smyth D D, Thliveris J A, Merchant M, Kim H K, Pierce G N. Metabolism, 2012, 61(5): 742-753
[105] Garribba E, Micera G, Sanna D. Inorg. Chim. Acta, 2006, 359: 4470-4476
[106] Lodyga-Chruscinska E, Micera G, Garribba E. Inorg. Chem., 2011, 50(3): 883-899
[107] Iglesias-Gonzalez T, Sanchez-Gonzalez C, Montes-Bayon M, Llopis-Gonzalez J, Sanz-Medel A. Anal. Bioanal. Chem., 2012, 402(1): 277-285
[108] Sanna D, Micera G., Garribba E. Inorg. Chem., 2011, 50(8): 3717-3728
[109] Correia I, Jakusch T, Cobbinna E, Mehtab S, Tomaz I, Nagy N V, Rockenbauer A, Pessoa J C, Kiss T. Dalton Trans., 2012, 41(21): 6477-6487
[110] Crans D C, Zhang B, Gaidamauskas E, Keramidas A D, Willsky G R, Roberts C R. Inorg. Chem., 2010, 49(9): 4245-4256
[111] Sanna D, Buglyo P, Micera G, Garribba E. J. Biol. Inorg. Chem., 2010, 15(6): 825-839
[112] Yang X G, Wang K, Lu J F, Crans D C. Coord. Chem. Rev., 2003, 237: 103-111
[113] Zhang S Q, Zhong X Y, Chen G H, Lu W L, Zhang Q. J. Pharm. Pharmacol., 2008, 60(1): 99-105
[114] Zhang S Q, Zhong X Y, Lu W L, Zheng L, Zhang X, Sun F, Fu G Y, Zhang Q. J. Inorg. Biochem., 2005, 99(5): 1064-1075
[115] Zhang S Q, Chen G H, Lu W L, Zhang Q. J. Bone Miner. Metab., 2007, 25(5): 293-301
[116] 计亮年(Ji L N). 世界科技研究与发展(World Sci-Tech R&D), 2004, (6): 1-6

[1] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[2] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[3] 沈娟, 朱阳, 师红东, 刘扬中. 铂类抗癌药物的多功能纳米递送体系[J]. 化学进展, 2018, 30(10): 1557-1572.
[4] 李秀娟, 曹云鹤, 华康, 王畅, 徐卫林, 方东. 钒氧基电极材料特点及其改性方法[J]. 化学进展, 2017, 29(10): 1260-1272.
[5] 蒋革, 罗锋, 徐耀忠, 张晓辉. 近紫外光辅助4-硫脱氧胸苷抗癌作用的研究[J]. 化学进展, 2016, 28(8): 1224-1237.
[6] 王刚, 陈金伟, 朱世富, 张洁, 刘效疆, 王瑞林. 全钒氧化还原液流电池碳素类电极的活化[J]. 化学进展, 2015, 27(10): 1343-1355.
[7] 王刚, 陈金伟, 汪雪芹, 田晶, 刘效疆, 王瑞林. 全钒氧化还原液流电池电解液[J]. 化学进展, 2013, 25(07): 1102-1112.
[8] 王路, 周百斌, 刘家仁. 抗癌多金属氧酸盐[J]. 化学进展, 2013, 25(07): 1131-1141.
[9] 汪南方, 刘素琴*. 全钒液流电池隔膜的制备与性能[J]. 化学进展, 2013, 25(01): 60-68.
[10] 刘福东, 单文坡, 石晓燕, 贺泓. 用于NH3选择性催化还原NOx的钒基催化剂[J]. 化学进展, 2012, 24(04): 445-455.
[11] 李月姣, 洪亮, 吴锋. 动力锂离子电池正极材料磷酸钒锂制备方法[J]. 化学进展, 2012, 24(01): 47-53.
[12] 任慢慢, 刘素文, 卢启芳. 钒系磷酸盐锂离子电池正极材料[J]. 化学进展, 2011, 23(9): 1985-1992.
[13] 高元哲, 胡长文, 李晓芳. 取代型钒氧簇合物[J]. 化学进展, 2011, 23(6): 1050-1059.
[14] 张晓辉 王爱玲 李德鹏 徐耀忠. 4-硫脱氧胸苷及类似物在UVA光辅助治疗抗癌药物方面的研究[J]. 化学进展, 2010, 22(05): 784-795.
[15] 张亚萍 陈艳 周元林 何平. 全钒氧化还原液流电池隔膜*[J]. 化学进展, 2010, 22(0203): 384-387.
阅读次数
全文


摘要

无机药物: 问题和解决思路