English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 1052-1060 DOI: 10.7536/PC121050 前一篇   

• 综述与评论 •

多肽介导的肿瘤靶向纳米递药系统

杨一祎1,2, 闫志强2,3*, 钟建2, 何丹农1,2*, 陆伟跃3   

  1. 1. 上海交通大学材料科学和工程学院 上海 200240;
    2. 纳米技术及应用国家工程研究中心 上海 200241;
    3. 复旦大学药学院智能化递药教育部及全军重点实验室 上海 201203
  • 收稿日期:2012-10-01 修回日期:2013-01-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 闫志强,钟建,何丹农 E-mail:yanzhiqiang2009@gmail.com;hdnbill@sh163.net
  • 基金资助:

    国家重大科学研究计划(973)项目(No. 2013CB932500);国家自然科学基金项目(No. 81202471,81102402);上海市“科技创新行动计划”国际科技合作项目(No. 12520708000);上海市“科技创新行动计划”纳米科技项目(No. 11nm0505000)和复旦大学药学院和智能化递药教育部重点实验室(复旦大学)开放课题(No. SDD2011-06)资助

Peptide-Mediated Nano Drug Delivery System for Tumor Targeting

Yang Yiyi1,2, Yan Zhiqiang2,3*, Zhong Jian2, He Dannong1,2*, Lu Weiyue3   

  1. 1. College of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China;
    3. Key Laboratory of Smart Drug Delivery, Ministry of Education and People's Liberation Army, School of Pharmacy, Fudan University, Shanghai 201203, China
  • Received:2012-10-01 Revised:2013-01-01 Online:2013-06-25 Published:2013-05-02

肿瘤靶向纳米递药系统是指利用肿瘤组织特殊的生理病理特点, 由纳米载体包载肿瘤诊疗药物构建而成的对肿瘤组织具有靶向定位功能的药物递送系统。多肽介导的肿瘤靶向纳米递药系统是肿瘤靶向递药领域较新的一个研究方向, 本文综述了该研究方向的四个重要发展历程--单功能靶向、双功能靶向、肿瘤穿透和环境响应型靶向纳米递药系统, 并介绍了各类递药系统的设计原理和典型研究案例。此外, 对目前多肽介导的纳米递药系统存在的优势与不足进行了分析。最后, 针对当前主动靶向肿瘤递药系统存在的研究困境, 提出了一种新型肿瘤靶向递药策略--“系统性靶向”策略。随着相关学科和多学科交叉的发展, 多肽介导的肿瘤靶向纳米递药系统将在肿瘤治疗中扮演更为重要的角色。

Nano drug delivery system for tumor targeting is composed of drugs for tumor diagnosis or treatment and nanocarriers with targetability to tumor tissues by taking advantage of the physiological and pathological characteristics of tumor. Peptide-mediated nano drug delivery system is a relatively new research direction in the tumor targeted delivery field. In this review, we introduce four important development courses in the research direction: single functional targeted, dual functional targeted, tumor-penetrating and environment-sensitive targeted nano drug delivery system, and the corresponding design principles and typical examples. In addition, the advantages and disadvantages of the peptide-mediated nano drug delivery system are discussed. Finally, in view of the current dilemma of active targeting drug delivery systems, we propose a novel tumor-targeted drug delivery strategy: the “systematic targeting” strategy. Temporally, the systematic targeting drug delivery system can stably penetrate through a series of barriers, and efficiently release the drug at the target site. Spatially, it not only kill the tumor cells, but also destroy the tumor microenvironment which is essential to the tumor growth. Ultimately, it can realize the systematic targeting therapy for tumors. With the development of related disciplines and multi-disciplinary subjects, peptide-mediated nano drug delivery system for tumor targeting will play a more important role in cancer therapy. Contents
1 Introduction
2 The physiological basis for tumor targeting
3 Peptide-mediated nano drug delivery system for tumor targeting
3.1 Single functional targeted nano drug delivery system
3.2 Dual functional targeted nano drug delivery system
3.3 Tumor penetrating nano drug delivery system
3.4 Environment-sensitive targeted nano drug delivery system
4 Strengths and weaknesses of peptide-mediated delivery system for tumor targeting
5 Summary and outlook

中图分类号: 

()

[1] Zhou Y, Kopecek J. J. Drug. Target., 2013, 21: 1-26
[2] Folkman J. N. Engl. J. Med., 1971, 285: 1182-1186
[3] Rezaei S J, Nabid M R, Niknejad H, Entezami A A. Int. J. Pharm., 2012, 437: 70-79
[4] Liu D, Liu F, Liu Z, Wang L, Zhang N. Mol. Pharm., 2011, 8: 2291-2301
[5] McQuade P, Knight L C, Welch M J. Bioconjug. Chem., 2004, 15: 988-996
[6] Jubeli E, Moine L, Nicolas V, Barratt G. Int. J. Pharm., 2012, 426: 291-301
[7] Fogal V, Zhang L, Krajewski S, Ruoslahti E. Cancer Res., 2008, 68: 7210-7218
[8] Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, Ofek P, Polyak D, Scomparin A, Satchi-Fainaro R. J. Control Release, 2012, 161: 446-460
[9] Danhier F, Feron O, Preat V. J. Control Release., 2010, 148: 135-146
[10] Gao H, Shi W, Freund L B. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 9469-9474
[11] Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V, Kotzki P O, Pelegrin M, Navarro-Teulon I, Pelegrin A, Pouget J P. J. Nucl. Med., 2009, 50: 2033-2041
[12] Dagar S, Krishnadas A, Rubinstein I, Blend M J, Onyuksel H. J. Control Release, 2003, 91: 123-133
[13] Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W. J. Control Release, 2010, 143: 136-142
[14] Zhang Y, Yang M, Park J H, Singelyn J, Ma H, Sailor M J, Ruoslahti E, Ozkan M, Ozkan C. Small, 2009, 5: 1990-1996
[15] Maeda N, Takeuchi Y, Takada M, Sadzuka Y, Namba Y, Oku N. J. Control Release, 2004, 100: 41-52
[16] Lu Z X, Liu L T, Qi X R. Int. J. Nanomed., 2011, 6: 1661-1673
[17] Holig P, Bach M, Volkel T, Nahde T, Hoffmann S, Muller R, Kontermann R E. Protein Eng. Des. Sel., 2004, 17: 433-441
[18] Pastorino F, Brignole C, Marimpietri D, Cilli M, Gambini C, Ribatti D, Longhi R, Allen T M, Corti A, Ponzoni M. Cancer Res., 2003, 63: 7400-7409
[19] Kondo M, Asai T, Katanasaka Y, Sadzuka Y, Tsukada H, Ogino K, Taki T, Baba K, Oku N. Int. J. Cancer., 2004, 108: 301-306
[20] Yan Z, Wang F, Wen Z, Zhan C, Feng L, Liu Y, Wei X, Xie C, Lu W. J. Control Release, 2012, 157: 118-125
[21] Yan Z, Zhan C, Wen Z, Feng L, Wang F, Liu Y, Yang X, Dong Q, Liu M, Lu W. Nanotechnology, 2011, 22: art. no. 415103
[22] Xin H, Jiang X, Gu J, Sha X, Chen L, Law K, Chen Y, Wang X, Jiang Y, Fang X. Biomaterials, 2011, 32: 4293-4305
[23] Mei D, Gao H, Gong W, Pang Z, Jiang X, Chen J. African Journal of Pharmacy and Pharmacology, 2011, 5: 409-414
[24] Derfus A M, Chen A A, Min D H, Ruoslahti E, Bhatia S N. Bioconjug. Chem., 2007, 18: 1391-1396
[25] Hu Q, Gu G, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q, Yao L, Xia H, Chen H, Jiang X, Gao X, Chen J. Biomaterials, 2013, 34: 1135-1145
[26] Sugahara K N, Teesalu T, Karmali P P, Kotamraju V R, Agemy L, Girard O M, Hanahan D, Mattrey R F, Ruoslahti E. Cancer Cell, 2009, 16: 510-520
[27] Garg A, Kokkoli E. Curr. Pharm. Biotechnol., 2011, 12: 1135-1143
[28] Negussie A H, Miller J L, Reddy G, Drake S K, Wood B J, Dreher M R. J. Control Release, 2010, 143: 265-273
[29] Moura V, Lacerda M, Figueiredo P, Corvo M L, Cruz M E, Soares R, de Lima M C, Simoes S, Moreira J N. Breast Cancer Res. Treat., 2012, 133: 61-73
[30] Ruoslahti E, Bhatia S N, Sailor M J. J. Cell. Biol., 2010, 188: 759-768
[31] Ran S, Volk L, Hall K, Flister M J. Pathophysiology, 2010, 17: 229-251
[32] Laakkonen P, Zhang L, Ruoslahti E. Ann. N. Y. Acad. Sci., 2008, 1131: 37-43
[33] Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Biomaterials, 2012, 33: 8167-8176
[34] Jain R K. Annu. Rev. Biomed. Eng., 1999, 1: 241-263
[35] Olive K P, Jacobetz M A, Davidson C J, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben M A, Caldwell M E, Allard D, Frese K K, Denicola G, Feig C, Combs C, Winter S P, Ireland-Zecchini H, Reichelt S, Howat W J, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani S R, Huang P, Davies S E, Plunkett W, Egorin M, Hruban R H, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson D A. Science, 2009, 324: 1457-1461
[36] Primeau A J, Rendon A, Hedley D, Lilge L, Tannock I F. Clin. Cancer. Res., 2005, 11: 8782-8788
[37] Teesalu T, Sugahara K N, Kotamraju V R, Ruoslahti E. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 16157-16162
[38] Torchilin V. Eur. J. Pharm. Biopharm., 2009, 71: 431-444
[39] Sawant R M, Hurley J P, Salmaso S, Kale A, Tolcheva E, Levchenko T S, Torchilin V P. Bioconjug. Chem., 2006, 17: 943-949
[40] Li Y, Pan S, Zhang W, Du Z. Nanotechnology, 2009, 20: art. no. 065104
[41] Bae Y H. J. Control Release, 2009, 133: 2-3
[42] Lo A, Lin C T, Wu H C. Mol. Cancer Ther., 2008, 7: 579-589
[43] Gu F, Zhang L, Teply B A, Mann N, Wang A, Radovic-Moreno A F, Langer R, Farokhzad O C. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 2586-2591
[44] Ng C K, Pemberton H N, Reis-Filho J S. Expert. Rev. Anticancer. Ther., 2012, 12: 1021-1032
[45] Zhan C, Zhao L, Wei X, Wu X, Chen X, Yuan W, Lu W Y, Pazgier M, Lu W. J. Med. Chem., 2012, 55: 6237-6241
[46] Pujals S, Sabido E, Tarrago T, Giralt E. Biochem. Soc. Trans., 2007, 35: 794-796
[47] Pienta K J, McGregor N, Axelrod R, Axelrod D E. Transl. Oncol., 2008, 1: 158-164
[48] Kareva I. Transl. Oncol., 2011, 4: 266-270
[49] Pong W W, Gutmann D H. Oncogene, 2011, 30: 1135-1146
[50] Duan S, Yuan W, Wu F, Jin T. Angewandte Chemie, 2012, 51: 7938-7941

[1] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1小分子抑制剂的研究进展*[J]. 化学进展, 0, (): 201141-201141.
[2] 代天志, 孙德群. 抗TB活性化合物的研究[J]. 化学进展, 2018, 30(11): 1784-1802.
[3] 郭键, 贺耘, 叶新山. 唾液酸转移酶抑制剂的设计与发现[J]. 化学进展, 2016, 28(11): 1712-1720.
[4] 展鹏, 王学顺, 刘新泳. “精准医疗”背景下的分子靶向药物研究——精准药物设计策略浅析[J]. 化学进展, 2016, 28(9): 1363-1386.
[5] 梅以成, 杨宝卫. 酰胺电子等排体在先导化合物优化中的应用[J]. 化学进展, 2016, 28(9): 1406-1416.
[6] 袁硕, 孙德群. β-模拟肽的构象限制在药物设计中的应用[J]. 化学进展, 2016, 28(7): 1084-1098.
[7] 卢金荣, 巨勇. 基于三萜骨架的超分子凝胶体系[J]. 化学进展, 2016, 28(2/3): 260-268.
[8] 侯辉, 孙德群. 模拟肽的构象限制在药物设计中的应用[J]. 化学进展, 2015, 27(9): 1260-1274.
[9] 王路, 周百斌, 刘家仁. 抗癌多金属氧酸盐[J]. 化学进展, 2013, 25(07): 1131-1141.
[10] 陈平, 姜亮, 刘琼*, 杨思林, 宋云, 倪嘉缵. 硒蛋白M及其与重大疾病的关系[J]. 化学进展, 2013, 25(04): 479-487.
[11] 程功, 王志刚, 刘彦琳, 张吉林*, 孙德慧, 倪嘉缵. 基于纳米结构材料的磷酸化蛋白/多肽富集和分析[J]. 化学进展, 2013, 25(04): 620-632.
[12] 张金超*, 杨康宁, 张海松, 梁兴杰*. 碳纳米材料在生物医学领域的应用现状及展望[J]. 化学进展, 2013, 25(0203): 397-408.
[13] 杨嬅嬿, 熊焕明*, 余绍宁* . 量子点给药载体研究进展[J]. 化学进展, 2012, 24(11): 2234-2246.
[14] 伍道春, 何严萍* . 非核苷类HCV NS5B聚合酶抑制剂[J]. 化学进展, 2012, 24(11): 2255-2267.
[15] 倪敏, 徐琴琴, 徐刚, 王恩俊, 银建中. 超临界流体输运技术在缓/控释药物制备中的应用[J]. 化学进展, 2011, 23(8): 1611-1617.