English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 990-998 DOI: 10.7536/PC121046 前一篇   后一篇

• 综述与评论 •

有机小分子胶凝剂在准固态染料敏化太阳电池中的应用

桃李, 霍志鹏*, 潘旭, 张昌能, 戴松元*   

  1. 中国科学院新型薄膜太阳电池重点实验室 中国科学院等离子体物理研究所 合肥 230031
  • 收稿日期:2012-10-01 修回日期:2013-03-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 霍志鹏,戴松元 E-mail:zhipenghuo@163.com;sydai@ipp.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2011CBA00700);国家高技术发展计划(863)项目(No. 2011AA050510)和国家自然科学基金项目(No. 21103197,21173227,21273242)资助

Development and Application of Low Molecular Mass Organogelators in Quasi-Solid-State Dye-Sensitized Solar Cells

Tao Li, Huo Zhipeng*, Pan Xu, Zhang Changneng, Dai Songyuan*   

  1. Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2012-10-01 Revised:2013-03-01 Online:2013-06-25 Published:2013-05-02

染料敏化太阳电池(DSC)作为一种新型薄膜太阳电池, 因具有价格低廉、高效等特点, 受到各界的广泛关注。电解质作为DSC的主要组成部分, 对电池效率和稳定性等性能有着重要的影响。本文简述了DSC工作原理及DSC用液态、固态及准固态电解质, 从有机溶剂液态电解质和离子液体电解质两个方面, 详细评述了有机小分子胶凝剂在准固态染料敏化太阳电池中的研究进展, 并对其在准固态染料敏化太阳电池中的应用前景进行了展望。

The dye sensitized solar cells (DSC) have been regarded as a promising candidate for next generation solar cells and attracted much attention owing to their low cost, low energy consumption, simple fabrication process and high power conversion efficiency. As a major component of the DSC, electrolyte has important impact on the performance and stability of DSC. In this paper, the operating principle of DSC and research progress of electrolyte, including liquid, solid state and quasi-solid-state electrolyte are described briefly. In addition, the application of low molecular mass organogelators (LMOG) in quasi-solid-state dye-sensitized solar cells is reviewed in details, and the application of LMOG in quasi-solid-state dye-sensitized solar cells is predicted. Contents
1 Introduction
2 Electrolytes and their category
2.1 Liquid electrolyte
2.2 Solid state electrolyte
2.3 Quasi-solid state electrolyte
3 Application of low molecular mass organogelators in quasi-solid state dye-sensitized solar cells
3.1 Low molecular mass organogelators (LMOG)
3.2 Application of LMOG in organic solvent electrolyte
3.3 Application of LMOG in ionic liquid electrolyte
4 Conclusion and outlook

中图分类号: 

()

[1] Oregan B, Grätzel M. Nature, 1991, 353: 737-740
[2] Nazeeruddin M K, Baranoff E, Grätzel M. Sol. Energy, 2011, 85: 1172-1178
[3] Grätzel M. J. Photochem. Photobiol. A-Chem., 2004, 168: 235-235
[4] 陈人杰(Chen R J), 张海琴(Zhang H Q), 吴峰(Wu F). 化学进展(Prog. Chem. ), 2011, 23(2/3): 366-373
[5] 秦达(Qin D), 郭晓枝(Guo X Z), 孙惠成(Sun H C), 罗艳红(Luo Y H), 孟庆波(Meng Q B), 李冬梅(Li D M). 化学进展(Prog. Chem. ), 2011, 23(2/3): 557-568
[6] Kumara G R A, Konno A, Shiratsuchi K, Tsukahara J, Tennakone K. Chem. Mater., 2002, 14: 954-955
[7] Meng Q B, Takahashi K, Zhang X T, Sutanto I, Rao T N, Sato O, Fujishima A, Watanabe H, Nakamori T, Uragami M. Langmuir, 2003, 19: 3572-3574
[8] Stergiopoulos T, Arabatzis I M, Katsaros G, Falaras P. Nano Lett., 2002, 2: 1259-1261
[9] Han H W, Liu W, Zhang J, Zhao X Z. Adv. Funct. Mater., 2005, 15: 1940-1944
[10] Zafer C, Karapire C, Sariciftci N S, Icli S. Sol. Energy Mater. Sol. Cells, 2005, 88: 11-21
[11] Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Grätzel M. Nature, 1998, 395: 583-585
[12] O'Regan B, Lenzmann F, Muis R, Wienke J. Chem. Mater., 2002, 14: 5023-5029
[13] 郭磊(Guo L), 潘旭(Pan X), 戴松元(Dai S Y). 化学进展(Prog. Chem. ), 2008, 20(10): 1595-1605
[14] Wu J H, Lin J M, Zhou M, Wei C R. Macromol. Rapid Commun., 2000, 21: 1032-1034
[15] Gong J, Sumathy K, Liang J. Renew. Energy, 2012, 39: 419-423
[16] Kim Y J, Kim J H, Kang M S, Lee M J, Won J, Lee J C, Kang Y S. Adv. Mater., 2004, 16: 1753-1757
[17] Liu Y, Lee J Y, Hong L. J. Power Sources, 2004, 129: 303-311
[18] Kim J H, Kang M S, Kim Y J, Won J, Kang Y S. Solid State Ionics, 2005, 176: 579-584
[19] Wang P, Zakeeruddin S M, Exnar I, Grätzel M. Chem. Commun., 2002, 2972-2973
[20] Scully S R, Lloyd M T, Herrera R, Giannelis E P, Malliaras G G. Synth. Met., 2004, 144: 291-296
[21] Ho A W Y, Wenham S R. Sol. Energy Mater. Sol. Cells, 2007, 91: 1234-1242
[22] Lee W F, Chen Y C. Eur. Polym. J., 2005, 41: 1605-1612
[23] Wu J H, Lan Z, Lin J M, Huang M L, Hao S C, Sato T, Yin S. Adv. Mater., 2007, 19: 4006-4011
[24] Li Q H, Wu J H, Tang Z Y, Xiao Y M, Huang M L, Lin J M. Electrochim. Acta, 2010, 55: 2777-2781
[25] Tang Z Y, Wu J H, Li Q H, Lan Z, Fan L G, Lin J M, Huang M L. Electrochim. Acta, 2010, 55: 4883-4888
[26] Tang Z Y, Wu J H, Liu Q, Zheng M, Tang Q W, Lan Z, Lin J M. J. Power Sources, 2012, 203: 282-287
[27] Cao F, Oskam G, Searson P C. J. Phys. Chem., 1995, 99: 17071-17073
[28] Yu Z X, Qin D, Zhang Y D, Sun H C, Luo Y H, Meng Q B, Li D M. Energy Enviro. Sci., 2011, 4: 1298-1305
[29] Yoon J, Kang D K, Won J, Park J Y, Kang Y S. J. Power Sources, 2012, 201: 395-401
[30] Wang P, Zakeeruddin S M, Comte P, Exnar I, Grätzel M. J. Am. Chem. Soc., 2003, 125: 1166-1167
[31] Wang P, Zakeeruddin S M, Grätzel M. J. Fluorine Chem., 2004, 125: 1241-1245
[32] Kubo W, Kambe S, Nakade S, Kitamura T, Hanabusa K, Wada Y, Yanagida S. J. Phys. Chem. B, 2003, 107: 4374-4381
[33] Zhang Y G, Zhao J, Sun B Q, Chen X J, Li Q, Qiu L H, Yan F. Electrochim. Acta, 2012, 61: 185-190
[34] Terech P, Weiss R G. Chem. Rev., 1997, 97: 3133-3159
[35] Hanabusa K, Hiratsuka K, Kimura M, Shirai H. Chem. Mater., 1999, 11: 649-655
[36] Placin F, Desvergne J P, Lassegues J C. Chem. Mater., 2001, 13: 117-121
[37] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34: 821-836
[38] Wang C, Zhang D Q, Zhu D B. Langmuir, 2007, 23: 1478-1482
[39] Davis R, Berger R, Zentel R. Adv. Mater., 2007, 19: 3878-3881
[40] Fernandes S A, Natalino R, Rodrigues P A, da Silva G M J, Jham G N. Tetrahedron Lett., 2012, 53: 1630-1633
[41] Caplar V, Frkanec L, Vujicic N S, Zini Dc' M. Chem.-Eur. J., 2010, 16: 3066-3082
[42] Rogers M A, Kontogiorgos V. Food Biophys., 2012, 7: 132-137
[43] Luboradzki R, Gronwald O, Ikeda M, Shinkai S, Reinhoudt D N. Tetrahedron, 2000, 56: 9595-9599
[44] Gronwald O, Shinkai S. Chem.-Eur. J., 2001, 7: 4328-4334
[45] Jung J H, Amaike M, Nakashima K, Shinkai S. J. Chem. Soc. Perkin Transactions 2, 2001, 1938-1943
[46] Hasegawa M, Enozawa H, Kawabata Y, Iyoda M. J. Am. Chem. Soc., 2007, 129: 3072-3073
[47] George M, Weiss R G. Acc. Chem. Res., 2006, 39: 489-497
[48] Kimura M, Mukai R, Tanigawa N, Tanaka S, Tamaru Y. Tetrahedron, 2003, 59: 7767-7777
[49] Shirakawa M, Kawano S, Fujita N, Sada K, Shinkai S. J. Org. Chem., 2003, 68: 5037-5044
[50] Kimura M, Muto T, Takimoto H, Wada K, Ohta K, Hanabusa K, Shirai H, Kobayashi N. Langmuir, 2000, 16: 2078-2082
[51] Sun R D, Nakajima A, Fujishima A, Watanabe T, Hashimoto K. J. Phys. Chem. B, 2001, 105: 1984-1990
[52] Shi F, Chen X X, Wang L Y, Niu J, Yu J H, Wang Z Q, Zhang X. Chem. Mater., 2005, 17: 6177-6180
[53] Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M. J. Am. Chem. Soc., 2004, 126: 12282-12283
[54] Gansauer A, Franke D, Lauterbach T, Nieger M. J. Am. Chem. Soc., 2005, 127: 11622-11623
[55] Gansauer A, Winkler I, Klawonn T, Nolte R J M, Feiters M C, Boerner H G, Hentschel J, Dotz K H. Organometallics, 2009, 28: 1377-1382
[56] Klawonn T, Gansauer A, Winkler I, Lauterbach T, Franke D, Nolte R J M, Feiters M C, Borner H, Hentschel J, Dotz K H. Chem. Commun., 2007, 1894-1895
[57] Smith D K. Adv. Mater., 2006, 18: 2773-2778
[58] Llusar M, Monros G, Roux C, Pozzo J L, Sanchez C. J. Mater. Chem., 2003, 13: 2505-2514
[59] Placin F, Desvergne J P, Belin C, Buffeteau T, Desbat B, Ducasse L, Lassegues J C. Langmuir, 2003, 19: 4563-4572
[60] Hirst A R, Smith D K. Chem.-Eur. J., 2005, 11: 5496-5508
[61] Langford S J, Latter M J, Lau V L, Martin L L, Mechler A. Org. Lett., 2006, 8: 1371-1373
[62] Derango C, Charpin P, Navaza J, Keller N, Nicolis I, Villain F, Coleman A W. J. Am. Chem. Soc., 1992, 114: 5475-5476
[63] Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S. J. Phys. Chem. B, 2001, 105: 12809-12815
[64] Mohmeyer N, Wang P, Schmidt H W, Zakeeruddin S M, Grätzel M. J. Mater. Chem., 2004, 14: 1905-1909
[65] Huo Z P, Dai S Y, Zhang C G, Kong F T, Fang X Q, Guo L, Liu W Q, Hu L H, Pan X, Wang K. J. Phys. Chem. B, 2008, 112: 12927-12933
[66] 霍志鹏(Huo Z P), 戴松元(Dai S Y), 张昌能(Zhang C N), 刘伟庆(Liu W Q), 方霞琴(Fang X Q), 蔡墨朗(Cai M L), 郭磊(Guo L), 王孔嘉(Wang K J), 姜年权(Jiang N Q), 郑亦庄(Zheng Y Z). 高等学校化学学报(Chem. J. Chinese Universities), 2009, 30(6): 1214-1218
[67] Huo Z P, Zhang C N, Fang X Q, Cai M L, Dai S Y, Wang J K. J. Power Sources, 2010, 195: 4384-4390
[68] Lan Z, Wu J H, Un J M, Huang M L. Sci. China-Chem., 2012, 55: 242-246
[69] Yu Q J, Yu C L, Guo F Y, Wang J Z, Jiao S J, Gao S Y, Li H T, Zhao L C. Energy Enviro. Sci., 2012, 5: 6151-6155
[70] Yang Y, Hu H, Zhou C H, Xu S, Sebo B, Zhao X Z. J. Power Sources, 2011, 196: 2410-2415
[71] Kimizuka N, Nakashima T. Langmuir, 2001, 17: 6759-6761
[72] Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S. Chem. Commun., 2002, 374-375
[73] Mohmeyer N, Kuang D B, Wang P, Schmidt H W, Zakeeruddin S M, Grätzel M. J. Mater. Chem., 2006, 16: 2978-2983
[74] Mohmeyer N, Schmidt H W. Chem.-Eur. J., 2005, 11: 863-872
[75] Pan X, Dai S Y, Wang K J. Chin. J. Chem., 2007, 25: 1601-1603
[76] Voss B A, Bara J E, Gin D L, Noble R D. Chem. Mater., 2009, 21: 3027-3029
[77] Li P J, Zhang Y G, Fa W J, Zhang Y D, Huang B. J. Carbohydr. Polym., 2011, 86: 1216-1220
[78] Tan L, Dong X L, Wang H, Yang Y J. Electrochem. Commun., 2009, 11: 933-936
[79] Sun S, Song J, Feng R, Shan Z. Electrochim. Acta, 2012, 69: 51-55
[80] Mikoshiba S, Murai S, Sumino H, Hayase S. Chem. Lett., 2002, 918-919

[1] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[2] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[3] 李晓茵, 周传聪, 王英华, 丁菲菲, 周华伟, 张宪玺. 锡基钙钛矿太阳电池光吸收材料[J]. 化学进展, 2019, 31(6): 882-893.
[4] 单雪燕, 王时茂, 孟钢, 方晓东. 钙钛矿太阳电池电子传输层与光吸收层的界面工程[J]. 化学进展, 2019, 31(5): 714-722.
[5] 王露, 霍志鹏, 易锦馨, Ahmed Alsaedi, Tasawar Hayat, 戴松元. 有机-无机杂化钙钛矿太阳电池中的钙钛矿层功能添加剂[J]. 化学进展, 2017, 29(8): 870-878.
[6] 李炎平, 於黄忠, 董一帆, 黄欣欣. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016, 28(8): 1170-1185.
[7] 姜玲, 阙亚萍, 丁勇, 胡林华, 张昌能, 戴松元. 上/下转换材料在染料敏化太阳电池中的应用进展[J]. 化学进展, 2016, 28(5): 637-646.
[8] 阙亚萍, 翁坚, 胡林华, 戴松元. 二氧化钛在钙钛矿太阳电池中的应用[J]. 化学进展, 2016, 28(1): 40-50.
[9] 刘超, 谭瑞琴, 曾俞衡, 王维燕, 黄金华, 宋伟杰. 硅纳米晶的制备及其在太阳电池中的应用研究[J]. 化学进展, 2015, 27(9): 1302-1312.
[10] 赵响, 赵宗彦. 四元化合物半导体Cu2ZnSnS4:结构、制备、应用及前景[J]. 化学进展, 2015, 27(7): 913-934.
[11] 王桂强, 段彦栋, 张娟, 林原, 禚淑萍. 染料敏化太阳能电池掺杂TiO2纳晶光阳极[J]. 化学进展, 2014, 26(07): 1255-1264.
[12] 孙花飞, 泮廷廷, 胡桂祺, 孙元伟, 王东亭, 张宪玺. 染料敏化太阳电池钌系敏化剂[J]. 化学进展, 2014, 26(04): 609-625.
[13] 刘锋, 朱俊*, 魏俊峰, 李毅, 胡林华, 戴松元*. 量子点敏化太阳电池[J]. 化学进展, 2013, 25(0203): 409-418.
[14] 刘伟庆, 寇东星, 蔡墨朗, 胡林华, 戴松元. 染料敏化太阳电池阻抗特性研究[J]. 化学进展, 2012, 24(05): 722-736.
[15] 武国华, 孔凡太, 翁坚, 戴松元, 奚小网, 张昌能. 有机染料及其在染料敏化太阳电池中的应用[J]. 化学进展, 2011, 23(9): 1929-1935.