English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 881-892 DOI: 10.7536/PC121044 前一篇   后一篇

• 综述与评论 •

胆碱类低共熔溶剂的物性及应用

张盈盈1,2, 陆小华1*, 冯新1, 史以俊1,3, 吉晓燕2   

  1. 1. 材料化学工程国家重点实验室 南京工业大学 南京 210009;
    2. 能源系 吕勒奥工业大学 吕勒奥 97187;
    3. 机械系 吕勒奥工业大学 吕勒奥 97187
  • 收稿日期:2012-10-01 修回日期:2013-01-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 陆小华 E-mail:xhlu@njut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21176112)和材料化学工程国家重点实验室开放基金 (KL10-04)资助

Properties and Applications of Choline-Based Deep Eutectic Solvents

Zhang Yingying1,2, Lu Xiaohua1*, Feng Xin1, Shi Yijun1,3, Ji Xiaoyan2   

  1. 1. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China;
    2. Division of Energy Science/Energy Engineering, Lule University of Technology, Lule 97187, Sweden;
    3. Division of Machine Element, Lule University of Technology, Lule 97187, Sweden
  • Received:2012-10-01 Revised:2013-01-01 Online:2013-06-25 Published:2013-05-02

作为一种新型的离子液体, 胆碱类低共熔溶剂具有相比于其他离子液体更为突出的特点, 如低毒、生物可降解、价格低廉等, 这些特点使得此类离子液体在绿色化学和工程化学中受到越来越多的关注。本文分析了胆碱类低共熔溶剂的凝固点、熔点、溶解度、黏度、表面张力、电导率等物性随温度、组成、水分等因素的变化及理论预测模型, 并介绍了胆碱类低共熔溶剂在润滑、功能材料制备、电化学、有机合成及生物质催化转化等方面的潜在应用。最后就胆碱类低共熔溶剂研究及应用中存在的问题及难点对其前景做出展望。

Choline-based deep eutectic solvents (DESs) are considered as a new class of ionic liquids. Comparing to traditional ionic liquids, choline-based DESs are low-toxic, biodegradable, and the price is generally low, which make them more and more attractive in green chemistry and industrial chemistry. In the current work, the properties of choline-based DESs, such as freezing point, melting point, solubility, viscosity, surface tension and conductivity, were collected and summarized. The dependences of these properties with different factors, such as temperature, mole ratios and water content, and the models which can be used to predict the properties were studied and discussed. The applications of choline-based DESs in the area of lubrication, functional material preparation, electrochemistry, organic synthesis and catalytic conversion of biomass were introduced. Finally, the problems and difficulties in research and applications were illustrated and then prospective was provided. Contents
1 Introduction
2 Properties of choline-based deep eutectic solvents
2.1 Freezing point and melting point
2.2 Solubility
2.3 Viscosity
2.4 Surface tension
2.5 Conductivity
3 Applications of choline-based deep eutectic solvents
3.1 Lubrication
3.2 Preparation of functional materials
3.3 Electrochemistry
3.4 Organic synthesis
3.5 Catalytic conversion of biomass
4 Conclusion and outlook

中图分类号: 

()

[1] 邓友全(Deng Y Q). 离子液体: 性质、制备与应用(Ionic Liquids: Properties, Preparation and Application), 北京: 中国石化出版社(Beijing: China Petrochemical Press), 2006. 1-8
[2] Galiński M, Lewandowski A, Stpniak I. Electrochim. Acta, 2006, 51: 5567-5580
[3] Ohno H. Electrochemical Aspects of Ionic Liquids, 2nd ed New Jersey: John Wiley & Sons Inc., 2011. 43-64
[4] 张锁江(Zhang S J), 徐春明(Xu C M), 吕兴梅(Lu X M), 周清(Zhou Q). 离子液体与绿色化学(Ionic Liquids and Green Chemistry). 北京: 科学出版社(Beijing: Science Press), 2009. 1-9
[5] Plechkova N V, Seddon K R. Chem. Soc. Rev., 2008, 37: 123-150
[6] Frade R F, Afonso C A. Hum. Exp. Toxicol., 2010, 29: 1038-1054
[7] Abbott A P, Capper G, Davies D L, Munro H L, Rasheed R K, Tambyrajah V. Chem. Commun., 2001, 2010-2011
[8] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003, 70-71
[9] Saptharishi L V. Anti-dumping investigation concerning imports of choline chloride from territory of European Union and Peoples Republic of China, (2001-2-22)[2001-12-26] http: //commercenicin/adfin_choline_chloride_china&euhtm
[10] Abbott A P, Boothby D, Capper G, Davies D L, Rasheed R K. J. Am. Chem. Soc., 2004, 126: 9142-9147
[11] 韦露(Wei L), 樊友军(Fan Y J). 化学通报(Chemistry), 2011, 74: 333-339
[12] Abbott A P, Capper G, McKenzie K J, Ryder K S. J Electroanal. Chem., 2007, 599: 288-294
[13] Rodgers R D, Seddon K R. Ionic Liquids as Green Solvents: Progress and Prospects. Washington, DC. American Chemical Society, 2003. 439-452
[14] Frank E, Abbott A P, Douglas R M. Electrodeposition from ionic liquids. Weinheim: Wiley-VCH, 2008. 83-123
[15] Li X Y, Hou M Q, Han B X, Wang X L, Zou L Z. J. Chem. Eng. Data, 2008, 53: 548-550
[16] Li W J, Zhang Z F, Han B X, Hu S Q, Song J L, Xie Y, Zhou X S. Green Chem., 2008, 10: 1142-1145
[17] Zhu A L, Jiang T, Han B X, Zhang J C, Xie Y, Ma X M. Green Chem., 2007, 9: 169-172
[18] Hu S Q, Jiang T, Zhang Z F, Zhu A L, Han B X, Song J L, Xie Y, Li W. J. Tetrahedron Lett., 2007, 48: 5613-5617
[19] Li X Y, Hou M Q, Zhang Z F, Han B X, Yang G Y, Wang X L, Zou L Z. Green Chem., 2008, 10: 879-884
[20] Hu S Q, Zhang Z F, Zhou Y X, Song J L, Fan H L, Han B X. Green Chem., 2009, 11: 873-877
[21] Su W C, Wong D S H, Li M H. J. Chem. Eng. Data, 2009, 54: 1951-1955
[22] Jhong H R, Wong D S H, Wan C C, Wang Y Y, Wei T C. Electrochem. Commun., 2009, 11: 209-211
[23] Zhou Q, Song Y T, Yu Y H, He H Y, Zhang S J. J. Chem. Eng. Data, 2010, 55: 1105-1108
[24] Duan Z Y, Gu Y L, Deng Y Q. Catal. Commun., 2006, 7: 651-656
[25] Zhang Q H, De Oliveira Vigier K, Royer S, Jerome F. Chem. Soc. Rev., 2012, 41: 7108-7146
[26] Carriazo D, Serrano M C, Gutierrez M C, Ferrer M L, del Monte F. Chem. Soc. Rev., 2012, 41: 4996-5014
[27] Abbott A P, McKenzie K J. Phys. Chem. Chem. Phys., 2006, 8: 4265-4279
[28] Abbott A P, Ryder K S, König U. Trans. Inst. Met. Finish., 2008, 86: 196-204
[29] 胡素琴(Hu S Q), 张晓东(Zhang X D), 许敏(Xu M), 孙立(Sun L). 化学进展(Progress in Chemistry), 2011, 23: 731-738
[30] de María P D, Maugeri Z. Curr. Opin. Chem. Biol., 2011, 15: 220-225
[31] Abbott A P, Capper G, Davies D L, Rasheed R. Inorg. Chem., 2004, 43: 3447-3452
[32] Wang H Y, Jing Y, Wang X H, Yao Y, Jia Y Z. J. Mol. Liq., 2011, 163: 77-82
[33] Morrison H G, Sun C C, Neervannan S. Int. J. Pharm., 2009, 378: 136-139
[34] Abbott A P, Davies D L, Capper G, Rasheed R K, Tambyrajah V. WO02/26701A2, 2002
[35] Parnham E R, Drylie E A, Wheatley P S, Slawin A M Z, Morris R E. Angew. Chem. Int. Ed., 2006, 45: 4962-4966
[36] Leron R B, Li M H. Thermochim. Acta, 2012, 530: 52-57
[37] Hou Y W, Gu Y Y, Zhang S M, Yang F, Ding H M, Shan Y K. J. Mol. Liq., 2008, 143: 154-159
[38] Babarao R, Jianwen J, Woodcock L V. Ind. Eng. Chem. Res., 2010, 50: 234-238
[39] Woodcock L V. Ind. Eng. Chem. Res., 2010, 50: 227-233
[40] Krossing I, Slattery J M, Daguenet C, Dyson P J, Oleinikova A, Weingärtner H. J. Am. Chem. Soc., 2006, 128: 13427-13434
[41] Katritzky A R, Jain R, Lomaka A, Petrukhin R, Karelson M, Visser A E, Rogers R D. J. Chem. Inf. Comp. Sci., 2002, 42: 225-231
[42] Eike D M, Brennecke J F, Maginn E J. Green Chem., 2003, 5: 323-328
[43] López-Martin I, Burello E, Davey P N, Seddon K R, Rothenberg G. ChemPhysChem, 2007, 8: 690-695
[44] Carrera G V S M, Branco L C, Aires-de-Sousa J, Afonso C A M. Tetrahedron, 2008, 64: 2216-2224
[45] Preiss U, Bulut S, Krossing I. J. Phys. Chem. B, 2010, 114: 11133-11140
[46] Huo Y, Xia S, Zhang Y, Ma P. Ind. Eng. Chem. Res., 2009, 48: 2212-2217
[47] Shariati A, Peters C J. J. Supercrit. Fluids, 2003, 25: 109-117
[48] Kroon M C, Karakatsani E K, Economou I G, Witkamp G J, Peters C J. J. Phys. Chem. B, 2006, 110: 9262-9269
[49] Qin Y, Prausnitz J M. Ind. Eng. Chem. Res., 2006, 45: 5518-5523
[50] Camper D, Scovazzo P, Koval C, Noble R. Ind. Eng. Chem. Res., 2004, 43: 3049-3054
[51] Scovazzo P, Camper D, Kieft J, Poshusta J, Koval C, Noble R. Ind. Eng. Chem. Res., 2004, 43: 6855-6860
[52] Wu X P, Liu Z P, Wang W C. Acta Phys. Chim. Sin., 2005, 21: 1138-1142
[53] Lopes J N C, Deschamps J, Padua A A H. Ionic Liquids IIIA: Fundamentals, Progress, Challenges and Opportunities. Washington, DC: American Chemical Society, 2005. 335-350
[54] Urukova I, Vorholz J, Maurer G. J. Phys. Chem. B, 2005, 109: 12154-12159
[55] Abbott A P, Capper G, Davies D L, Rasheed R K, Shikotra P. Inorg. Chem., 2005, 44: 6497-6499
[56] Abbott A P, Capper G, Davies D L, McKenzie K J, Obi S U. J. Chem. Eng. Data, 2006, 51: 1280-1282
[57] Wang X D, Wu W Y, Tu G F, Jiang K X T. Nonferr Metal Soc., 2010, 20: 2032-2036
[58] Stanton M K, Bak A. Crystal Growth & Design, 2008, 8: 3856-3862
[59] Ciocirlan O, Iulian O, Croitoru O. Rev. Chim., 2010, 61: 721-723
[60] Shin H Y, Matsumoto K, Higashi H, Iwai Y, Arai Y. J. Supercrit. Fluids, 2001, 21: 105-110
[61] Abbott A P, Capper G, Davies D L, Rasheed R K. Chem. Eur. J., 2004, 10: 3769-3774
[62] Abbott A P, Capper G, Gray S. ChemPhysChem, 2006, 7: 803-806
[63] Abbott A P, Harris R C, Ryder K S. J. Phys. Chem. B, 2007, 111: 4910-4913
[64] Branco L C, Rosa J N, Ramos J J M, Afonso C A M. Chem. Eur. J., 2002, 8: 3671-3677
[65] Shaukat S, Buchner R. J. Chem. Eng. Data, 2011, 56: 4944-4949
[66] Bockris J O M, Reddy A K N. Modern Electrochemistry, New York: Plenum Press, 1970. 771-1031
[67] Blander M. Molten Salt Chemistry 1 nd ed., New York: Interscience Publishers, 1964. 109-125
[68] Frenkel J. Kinetic Theory of Liquids, Oxford: Clarendon Press, 1946
[69] Fürth R. Proc Cambridge Phil Soc, 1941, 37: 252-275
[70] Fürth R. Proc Cambridge Phil Soc, 1941, 37: 281-290
[71] Glasstone S, Laidler K J, Eyring H. The theory of rate processes: the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena, New York: McGraw-Hill, 1941. 480-484
[72] Popescu A M, Constantin V, Florea A, Baran A. Rev. Chim., 2011, 62: 531-537
[73] Abbott A P, Capper G, McKenzie K J, Glidle A, Ryder K S. Phys. Chem. Chem. Phys., 2006, 8: 4214-4221
[74] Abbott A P, Harris R C, Ryder K S, D'Agostino C, Gladden L F, Mantle M D. Green Chem., 2011, 13: 82-90
[75] Yu Y H, Soriano A N, Li M H. J. Taiwan Inst. Chem. Eng., 2009, 40: 205-212
[76] Lawes S D A, Hainsworth S V, Blake P, Ryder K S, Abbott A P. Tribol. Lett., 2010, 37: 103-110
[77] Parnham E R, Morris R E. Acc. Chem. Res., 2007, 40: 1005-1013
[78] Taubert A. Acta Chim. Slov., 2005, 52: 183-186
[79] Freudenmann D, Wolf S, Wolff M, Feldmann C. Angew. Chem. Int. Ed., 2011, 50: 11050-11060
[80] Morris R E. Chem. Commun., 2009, 2990-2998
[81] Paraknowitsch J P, Thomas A. Macromol. Chem. Phys., 2012, 213: 1132-1145
[82] Ma Z, Yu J, Dai S. Adv. Mater., 2010, 22: 261-285
[83] Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430: 1012-1016
[84] Drylie E A, Wragg D S, Parnham E R, Wheatley P S, Slawin A M Z, Warren J E, Morris R E. Angew. Chem. Int. Ed., 2007, 46: 7839-7843
[85] Liao J H, Wu P C, Bai Y H. Inorg. Chem. Commun., 2005, 8: 390-392
[86] Liu L, Kong Y, Xu H, Li J P, Dong J X, Lin Z. Microporous and Mesoporous Mater., 2008, 115: 624-628

[87] Jhang P C, Chuang N T, Wang S L Angew. Chem. Int. Ed., 2010, 49: 4200-4204

[88] Jhang P C, Yang Y C, Lai Y C, Liu W R, Wang S L. Angew. Chem. Int. Ed., 2009, 48: 742-745

[89] Lin Z, Wragg D S, Lightfoot P, Morris R E. Dalton Trans., 2009, 5287-5289

[90] Sheu C Y, Lee S F, Lii K H. Inorg. Chem., 2006, 45: 1891-1893

[91] Tang M F, Liu Y H, Chang P C, Liao Y C, Kao H M, Lii K H. Dalton Trans., 2007, 4523-4528

[92] Wang S M, Li Y W, Feng X J, Li Y G, Wang E B. Inorg. Chim. Acta, 2010, 363: 1556-1560

[93] Zhang J, Bu J T, Chen S, Wu T, Zheng S, Chen Y, Nieto R A, Feng P, Bu X. Angew. Chem. Int. Ed., 2010, 49: 8876-8879

[94] Kim S H, Yang S T, Kim J, Ahn W S. Bull. Korean Chem. Soc., 2011, 32: 2783-2786

[95] Shi F N, Trindade T, Rocha J O, Paz F A A. Crystal Growth & Design, 2008, 8: 3917-3920

[96] Liao H G, Jiang Y X, Zhou Z Y, Chen S P, Sun S G. Angew. Chem. Int. Ed., 2008, 47: 9100-9103

[97] Chirea M, Freitas A, Vasile B S, Ghitulica C, Pereira C M, Silva F. Langmuir, 2011, 27: 3906-3913

[98] Gutiérrez M C, Rubio F, del Monte F. Chem. Mater., 2010, 22: 2711-2719

[99] Gutiérrez M C, Carriazo D, Tamayo A, Jiménez R, Picó F, Rojo J M, Ferrer M L, del Monte F. Chem. Eur. J., 2011, 17: 10533-10537

[100] Smith E L, Fullarton C, Harris R C, Saleem S, Abbott A P, Ryder K S. Trans. Inst. Met. Finish., 2010, 88: 285-291

[101] Gómez E, Cojocaru P, Magagnin L, Valles E J. Electroanal. Chem., 2011, 658: 18-24

[102] Golgovici F, Cojocaru A, Agapescu C, Jin Y, Nedelcu M, Wang W, Visan T. Stud. Univ. Babes-Bolyai Chem., 2009, 54: 175-188

[103] Abbott A P, El Ttaib K, Ryder K S, Smith E L. Trans. Inst. Met. Finish., 2008, 86: 234-240

[104] Shivagan D D, Dale P J, Samantilleke A P, Peter L M. Thin Solid Films, 2007, 515: 5899-5903

[105] Abbott A P, El Ttaib K, Frisch G, McKenzie K J, Ryder K S. Phys. Chem. Chem. Phys., 2009, 11: 4269-4277

[106] Martis P, Dilimon V S, Delhalle J, Mekhalif Z. Electrochim. Acta, 2010, 55: 5407-5410

[107] Gu C D, Tu J P. Langmuir, 2011, 27: 10132-10140

[108] Chan C P, Lam H, Surya C. Sol. Energy Mater. Sol. Cells, 2010, 94: 207-211

[109] Abbott A P, Capper G, Davies D L, Rasheed R H, Tambyrajah V. Green Chem., 2002, 4: 24-26

[110] Abbott A P, Bell T J, Handa S, Stoddart B. Green Chem., 2005, 7: 705-707

[111] Morales R C, Tambyrajah V, Jenkins P R, Davies D L, Abbott A P. Chem. Commun., 2004, 158-159

[112] Sunitha S, Kanjilal S, Reddy P S, Prasad R B N. Tetrahedron Lett., 2007, 48: 6962-6965

[113] Xie Y T, Hou R S, Wang H M, Kang I J, Chen L C. J. Chin. Chem. Soc., 2009, 56: 839-842

[114] Pawar P M, Jarag K J, Shankarling G S. Green Chem., 2011, 13: 2130-2134

[115] Singh B, Lobo H, Shankarling G. Catal. Lett., 2011, 141: 178-182

[116] Sonawane Y A, Phadtare S B, Borse B N, Jagtap A R, Shankarling G S. Org. Lett., 2010, 12: 1456-1459

[117] Azizi N, Manocheri Z. Res. Chem. Intermed., 2012, 38: 1495-1500

[118] Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y. Green Chem., 2008, 10: 1280-1283

[119] Zhao H, Baker G A, Holmes S. Org. Biomol. Chem., 2011, 9: 1908-1916

[120] Azizi N, Batebi E, Bagherpour S, Ghafuri H. RSC Advances, 2012, 2: 2289-2293

[121] Gutiérrez M C, Ferrer M L, Yuste L, Rojo F, Monte F D. Angew. Chem. Int. Ed., 2010, 49: 2158-2162

[122] Long T, Deng Y F, Gan S C, Chen J. Chin. J. Chem. Eng., 2010, 18: 322-327

[123] Gorke J T, Srienc F, Kazlauskas R J. Chem. Commun., 2008, 1235-1237

[1] 王静, 于浩迪, 王俊坤, 袁玲, 任林, 高庆宇. 活性人工游泳体的螺旋运动[J]. 化学进展, 2023, 35(2): 206-218.
[2] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[5] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[6] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[7] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[8] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.
[9] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[10] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[11] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[12] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[13] 张庆凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 钠基固体电解质及其在能源上的应用[J]. 化学进展, 2019, 31(1): 210-222.
[14] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[15] 易锦馨, 霍志鹏, Abdullah M. Asiri, Khalid A. Alamry, 李家星. 电解质在超级电容器中的应用[J]. 化学进展, 2018, 30(11): 1624-1633.
阅读次数
全文


摘要

胆碱类低共熔溶剂的物性及应用