English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 611-619 DOI: 10.7536/PC121033 前一篇   后一篇

• 材料 •

基于磁性氧化铁纳米粒的诊断治疗药物

祁辉, 朱艳红*, 徐辉碧, 杨祥良   

  1. 华中科技大学生命科学与技术学院 国家纳米药物工程技术研究中心 武汉 430074
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 朱艳红 E-mail:yhzhu@mail.hust.edu.cn
  • 基金资助:

    中央高校基本科研业务费项目(No. 2012QN068)和国家重大科学研究计划(973)项目(No.2011CB933103)资助

Magnetic Iron Oxide Nanoparticle-Based Theranostic Nanomedicine

Qi Hui, Zhu Yanhong*, Xu Huibi, Yang Xiangliang   

  1. College of Life Science and Technology, Huazhong University of Science and Technology, National Engineering Research Center for Nanomedicine, Wuhan 430074, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-04-24 Published:2013-04-09

诊断治疗药物作为一种新兴的治疗策略,展现出良好的应用前景。基于磁性氧化铁纳米粒的诊断治疗药物利用纳米技术将纳米粒与治疗性药物同时装载于纳米粒上,该纳米系统一般由三部分组成:磁性纳米粒核心、包覆层及功能区域。该系统可以用于影像诊断、实时监测药物输送、进行药效评价,并有望用于个体化医疗。本文介绍了磁性氧化铁纳米粒的合成、表面修饰、功能化及其生物医学应用等,重点介绍了磁性氧化铁纳米粒的表面修饰及功能化,经过表面修饰及功能化后,可制得多模式化、多功能化的诊断治疗药物,并对纳米诊断治疗药物在应用于个体化医疗所面临的挑战进行了初步的分析讨论。

Theranostic nanomedicine is emerging as a promising therapeutic strategy. Magnetic iron oxide nanoparticle-based theranostic nanomedicine takes advantage of nanotechnology to load both nanoparticle and therapeutic agent into one nanoparticle. The resulting nanosystem is composed of three main components: an iron oxide nanoparticle core, coating, and multifunction moieties. These nanoparticles are expected to play a significant role in personalized medicine for their capability of diagnosis, visualizing drug delivering and monitoring therapeutic response in real-time. In this review, we summarize the synthesis, surface modification, multifunction and biomedicine application of magnetic iron oxide nanoparticle, especially focused on the part of surface modification and multifunction, which are associated with the multimodality and multifunctionality theranostics. At last, the challenges of the application of nanomedicine in personalized medicine are presented.

Contents
1 Introduction
2 Synthesis of MNPs
3 The compounds commonly used in the surface modification of MNPs
3.1 Polymers
3.2 Inorganic shells
3.3 Small organic molecules
4 Surface functionalization of MNPs
4.1 Targeting modification of MNPs
4.2 Multifunction of MNPs
5 Application of theranostic nanomedicine based on MNPs
6 Challenge of theranostic nanomedicine in clinic

中图分类号: 

()

[1] Xie J, Lee S, Chen X. Adv. Drug Deliv. Rev., 2010, 62(11): 1064-1079
[2] Kelkar S S, Reineke T M. Bioconjug. Chem., 2011, 22(10): 1879-1903
[3] Nie S, Xing Y, Kim G J, Simons J W. Annu. Rev. Biomed. Eng., 2007, 9: 257-288
[4] Fang C, Zhang M. J. Control Release, 2010, 146(1): 2-5
[5] Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Adv. Drug Deliv. Rev., 2011, 63(1/2): 24-46
[6] Lin M M, Kim H H, Kim H, Dobson J, Kim D K. Nanomedicine, 2010, 5(1): 109-133
[7] Sun C, Lee J S, Zhang M. Adv. Drug Deliv. Rev., 2008, 60(11): 1252-1265
[8] Andreas K, Georgieva R, Ladwig M, Mueller S, Notter M, Sittinger M, Ringe J. Biomaterials, 2012, 33(18): 4515-4525
[9] Jain T K, Richey J, Strand M, Leslie-Pelecky D L, Flask C A, Labhasetwar V. Biomaterials, 2008, 29(29): 4012-4021
[10] Kim D K, Mikhaylova M, Zhang Y, Muhammed M. Chem. Mat., 2003, 15(8): 1617-1627
[11] Ramaswamy S, Schornack P A, Smelko A G, Boronyak S M, Ivanova J, Mayer J E, Sacks M S. NMR Biomed., 2012, 25(3): 410-417
[12] Shubayev V I, Pisanic T R, Jin S. Adv. Drug Deliv. Rev., 2009, 61(6): 467-477
[13] Lammers T, Kiessling F, Hennink W E, Storm G. Mol. Pharm., 2010, 7(6): 1899-1912
[14] Chen X Y, Gambhlr S S, Cheon J. Accounts Chem. Res., 2011, 44(10): 841-841
[15] Wu J H, Ko S P, Liu H L, Jung M H, Lee J H, Ju J S, Kim Y K. Colloid. Surf. A-Physicochem. Eng. Asp., 2008, 313/314: 268-272
[16] Chin A B, Yaacob I I. J. Mater. Process. Technol., 2007, 191(1/3): 235-237
[17] Goti Dc' M, Jurkin T, Musi Dc' S. Colloid Poly. Sci., 2007, 285(7): 793-800
[18] Vasylenko I V, Kolotilov S V, Kotenko I E, Gavrilenko K S, Tuna F, Timco G A, Winpenny R E P, Pavlishchuk V V. J. Magn. Magn. Mater., 2012, 324(4): 595-601
[19] Simeonidis K, Mourdikoudis S, Moulla M, Tsiaoussis I, Martinez-Boubeta C, Angelakeris M, Dendrinou-Samara C, Kalogirou O. J. Magn. Magn. Mater., 2007, 316(2): e1-e4
[20] Chen R F, Cheng J H, Wei Y. J. Alloy. Compd., 2012, 520: 266-271
[21] Tadi Dc' M, Kusigerski V, Markovi Dc' D, Panjan M, Miloševi Dc' I, Spasojevi Dc' V. J. Alloy. Compd., 2012, 525: 28-33
[22] Marchegiani G, Imperatori P, Mari A, Pilloni L, Chiolerio A, Allia P, Tiberto P, Suber L. Ultrason. Sonochem., 2012, 19(4): 877-882
[23] Cabrera L, Gutierrez S, Menendez N, Morales M P, Heffasti P. Electrochim. Acta, 2008, 53(8): 3436-3441
[24] Ma Z, Liu H. China Particuology, 2007, 5(1/2): 1-10
[25] Berry C C, Wells S, Charles S, Aitchison G, Curtis A S. Biomaterials, 2004, 25(23): 5405-5413
[26] Fang M, Strom V, Olsson R T, Belova L, Rao K V. Nanotechnology, 2012, 23(14): art. no. 145601
[27] Shi R R, Gao G H, Yi R, Zhou K C, Qiu G Z, Liu X H. Chin. J. Chem., 2009, 27(4): 739-744
[28] Amara D, Felner I, Nowik I, Margel S. Colloid Surf. A- Physicochem. Eng. Asp., 2009, 339(1/3): 106-110
[29] Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124(28): 8204-8205
[30] Xie J, Chen K, Huang J, Lee S, Wang J H, Gao J, Li X G, Chen X Y. Biomaterials, 2010, 31(11): 3016-3022
[31] Xie J, Liu G, Eden H S, Ai H, Chen X Y. Accounts Chem. Res., 2011, 44(10): 883-892
[32] Jun Y W, Lee J H, Cheon J. Angew. Chem. Int. Ed. Engl., 2008, 47(28): 5122-5135
[33] Gupta A K, Gupta M. Biomaterials, 2005, 26(18): 3995-4021
[34] Rosen J E, Chan L, Shieh D B, Gu F X. Nanomedicine, 2012, 8(3): 275-290
[35] Gupta A K, Curtis A S G. J. Mater. Sci. Mater. Med., 2004, 15(4): 493-496
[36] Erathodiyil N, Ying J Y. Acc. Chem. Res., 2011, 44(10): 925-935
[37] Flesch C, Unterfinger Y, Bourgeat-Lami E, Duguet E, Delaite C, Dumas P. Macromol. Rapid Commun., 2005, 26(18): 1494-1498
[38] Zheng Y, Gao S, Ying J Y. Adv. Mater., 2007, 19(3): 376-380
[39] Jiwon L, Tetsuhioko I, Mamoru S. J. Colloid Interface Sci., 1996, 177: 490- 494
[40] Liu S, Wei X, Chu M, Peng J, Xu Y. Colloids Surf. B-Biointerfaces, 2006, 51(2): 101-106
[41] Garcia I, Tercjak A, Zafeiropoulos N E, Stamm M, Mondragon I. J. Polym. Sci. Pol. Chem., 2007, 45(20): 4744-4750
[42] Hickey R J, Haynes A S, Kikkawa J M, Park S J. J. Am. Chem. Soc., 2011, 133(5): 1517-1525
[43] Berry C C, Wells S, Charles S, Aitchison G, Curtis A S. Biomaterials, 2004, 25(23): 5405-5413
[44] Cho J H, Ko S G, Ahn Y, Choi E J. J. Magn., 2009, 14(3): 124-128
[45] Sun C R, Du K, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Lee D H, Ellenbogen R G, Ratner B, Zhang M Q. ACS Nano, 2010, 4(4): 2402-2410
[46] Chung H J, Lee H, Bae K H, Lee Y, Park J, Cho S W, Hwang J Y, Park H, Langer R, Anderson D, Park T G. ACS Nano, 2011, 5(6): 4329-4336
[47] Lu Z, Dai J, Song X, Wang G, Yang W. Colloid Surf. A-Physicochem. Eng. Asp., 2008, 317(1/3): 450-456
[48] Xu Z Z, Wang C C, Yang W L, Fu S K. J. Mater. Sci., 2005, 40(17): 4667-4669
[49] Hui C, Shen C M, Tian J F, Bao L H, Ding H, Li C, Tian Y A, Shi X Z, Gao H J. Nanoscale, 2011, 3(2): 701-705
[50] Lu Y, Yin Y D, Mayers B T, Xia Y N. Nano Lett., 2002, 2(3): 183-186
[51] Li Y T, Liu J, Zhong Y J, Zhang J, Wang Z Y, Wang L, An Y L, Lin M, Gao Z Q, Zhang D S. Int. J. Nanomed., 2011, 6: 2805-2819
[52] Xu Z C, Hou Y L, Sun S H. J. Am. Chem. Soc., 2007, 129(28): 8698-8699
[53] Kumagai M, Sarma T K, Cabral H, Kaida S, Sekino M, Herlambang N, Osada K, Kano M R, Nishiyama N, Kataoka K. Macromol. Rapid Commun., 2010, 31(17): 1521-1528
[54] Lyon J L, Fleming D A, Stone M B, Schiffer P, Williams M E. Nano Lett., 2004, 4(4): 719-723
[55] Tamer U, Gündo Dgˇ du Y, Boyací H, Pekmez K. J. Nanopart. Res., 2009, 12(4): 1187-1196
[56] Cui Y R, Hong C, Zhou Y L, Li Y, Gao X M, Zhang X. Talanta, 2011, 85(3): 1246-1252
[57] De Palma R, Peeters S, van Bael M J, van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G. Chem. Mat., 2007, 19(7): 1821-1831
[58] ampelj S, Makovec D, Drofenik M. J. Magn. Magn. Mater., 2009, 321: 1346-1350
[59] Tassa C, Shaw S Y, Weissleder R. Acc. Chem. Res., 2011, 44(10): 842-852
[60] Koo H, Huh M S, Sun I C, Yuk S H, Choi K, Kim K, Kwon I C. Acc. Chem. Res., 2011, 44(10): 1018-1028
[61] Ling Y, Wei K, Luo Y, Gao X, Zhong S Z. Biomaterials, 2011, 32(29): 7139-7150
[62] Yang X Q, Hong H, Grailer J J, Rowland I J, Javadi A, Hurley S A, Xiao Y L, Yang Y A, Zhang Y, Nickles R, Cai W B, Steeber D A. Biomaterials, 2011, 32(17): 4151-4160
[63] Wunderbaldinger P, Josephson L, Weissleder R. Bioconjug. Chem., 2002, 13(2): 264-268
[64] Gupta A K, Naregalkar R R, Vaidya V D, Gupta M. Nanomedicine, 2007, 2(1): 23-39
[65] Xie H, Zhu Y H, Jiang W L, Zhou Q, Yang H, Gu N, Zhang Y, Xu H B, Yang X L. Biomaterials, 2011, 32(2): 495-502
[66] Fei X N, Liu L J, Zhu S, Liu Y R. Prog. Chem., 2011, 23(8): 1728-1736
[67] Yu M K, Park J, Jon S. Theranostics, 2012, 2: 3-44
[68] Kommareddy S, Amiji M. Bioconjugate Chem., 2005, 16(6): 1423-1432
[69] Sun E Y, Josephson L, Kelly K A, Weissleder R. Bioconjug. Chem., 2006, 17(1): 109-113
[70] McCarthy J R, Weissleder R. Adv. Drug Deliv. Rev., 2008, 60(11): 1241-1251
[71] Reddy G R, Bhojani M S, McConville P, Moody J, Moffat B A, Hall D E, Kim G, Koo Y E, Woolliscroft M J, Sugai J V, Johnson T D, Philbert M A, Kopelman R, Rehemtulla A, Ross B D. Clin. Cancer Res., 2006, 12(22): 6677-6686
[72] Mok H, Veiseh O, Fang C, Kievit F M, Wang F Y, Park J O, Zhang M Q. Mol. Pharm., 2010, 7(6): 1930-1939
[73] Yu M K, Park J, Jeong Y Y, Moon W K, Jon S. Nanotechnology, 2010, 21(41): art. no. 415102
[74] Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen R G, Olson J, Zhang M. Cancer Res., 2009, 69(15): 6200-6207
[75] Hadjipanayis C G, Machaidze R, Kaluzova M, Wang L, Schuette A J, Chen H, Wu X, Mao H. Cancer Res., 2010, 70(15): 6303-6312
[76] Ge Y, Zhang Y, He S, Nie F, Teng G, Gu N. Nanoscale Res. Lett., 2009, 4(4): 287-295
[77] Kumar M, Yigit M, Dai G, Moore A, Medarova Z. Cancer Res., 2010, 70(19): 7553-7561
[78] Brunel F M, Lewis J D, Destito G, Steinmetz N F, Manchester M, Stuhlmann H, Dawson P E. Nano Lett., 2010, 10(3): 1093-1097
[79] Zhang J, Misra R D. Acta Biomater., 2007, 3(6): 838-850
[80] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Edit., 2001, 40 (11): 2004-2021
[81] Sun E Y, Josephson L, Weissleder R. Mol. Imaging, 2006, 5(2): 122-128
[82] Das M, Bandyopadhyay D, Mishra D, Datir S, Dhak P, Jain S, Maiti T K, Basak A, Pramanik P. Bioconjug. Chem., 2011, 22(6): 1181-1193
[83] Santra S, Kaittanis C, Grimm J, Perez J M. Small, 2009, 5(16): 1862-1868
[84] Chen G H, Chen W J, Wu Z, Yuan R X, Li H, Gao J M, Shuai X T. Biomaterials, 2009, 30: 1962-1970
[85] Jain T K, Morales M A, Sahoo S K, Leslie-Pelecky D L, Labhasetwar V. Mol. Pharm., 2005, 2(3): 194-205
[86] Ling Y, Wei K, Luo Y, Gao X, Zhong S Z. Biomaterials, 2011, 32: 7139-7150
[87] El-Dakdouki M H, Zhu D C, El-Boubbou K, Kamat M, Chen J, Li W, Huang X. Biomacromolecules, 2012, 13(4): 1144-1151
[88] Medarova Z, Pham W, Farrar C, Petkova V, Moore A. Nat. Med., 2007, 13(3): 372-377
[89] Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A. Cancer Res., 2009, 69(3): 1182-1189

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[4] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[5] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[6] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[7] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[8] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[9] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[10] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[11] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[12] 左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458.
[13] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[14] 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*. 多功能锂硫电池隔膜[J]. 化学进展, 2018, 30(12): 1942-1959.
[15] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.