English
新闻公告
More
化学进展 DOI: 10.7536/PC121007 前一篇   后一篇

• 金属和非金属蛋白 •

金属离子对金属蛋白结构与功能的调控

许彩虹, 赵亚琴, 杨斌盛*   

  1. 山西大学分子科学研究所 化学生物学与分子工程教育部重点实验室 太原 030006
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 杨斌盛 E-mail:yangbs@sxu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20771068,20901048)资助

Mediating Roles of Metal Ions in the Structures and Functions of Metalloproteins

Xu Caihong, Zhao Yaqin, Yang Binsheng*   

  1. Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-04-24 Published:2013-04-09

生命金属在生命过程中以不同的化学方式发挥着重要的作用。质膜、细胞器膜等使不同的生命金属在生物体系中有着不同的隔室化分布,相应的金属蛋白或金属伴侣蛋白在维持金属离子内稳态(homeostasis)中起着关键作用。生命体系中广泛存在着具有两个以上金属离子结合部位的金属蛋白。在确定的生理微环境下,由于金属离子结合热力学性质的不等价,该类金属蛋白的生物学功能取决于所结合金属离子的种类及多少。本文以伴刀豆球蛋白A、铜/锌超氧化物歧化酶、中心蛋白、锌指蛋白为例,介绍了金属离子在调控金属蛋白生物学功能中的作用。因此,深入研究金属离子与金属蛋白结合的热力学性质对于理解生命过程的无机化学基础具有重要意义。

Biometals play important roles in biological process by different chemical actions. The biomembranes enable different metals to acquire different distribution mode among compartments in a biological system.Metalloproteins or metal chaperones are required to maintain cellular metal ions homeostasis. In cells and intracellular organelles there are many proteins whose metal binding sites consist of more metal ions and are not equivalent in thermodynamics. The functions of metalloproteins are mediated by the binding of metal ions, such as that of concanavalin A, Cu/Zn superoxide dismutase, centrin, and zinc fingers protein. That the binding of metal ions to proteins are investigated is of great significance for bioinorganic chemists to understand the roles of metal ions in mediating the functional changes of metalloproteins.

Contents
1 Introduction
2 Concanavalin A
2.1 Structure
2.2 Functional changes mediated by the binding of metal ions
3 Cu/Zn superoxide dismutase
3.1 Structure
3.2 Biological functions
3.3 Functional changes mediated by the binding of metal ions
4 Centrin
4.1 Biological functions
4.2 Structure
4.3 Functional changes mediated by the binding of metal ions
5 Zinc fingers protein
5.1 Structures of zinc fingers
5.2 The binding of metal ions
5.3 Regulation of biological functions by zinc ion
6 Conclusion and outlook

中图分类号: 

()

[1] Holm H R, Kennepohl P, Solomon E I. Chem. Rev., 1996, 96: 2239-2314
[2] Elena G, Henryk K, Daniela V, Gianni V. Chem. Rev., 2006, 106: 1995-2044
[3] Nagano C S, Calvete J J, Barettino D, Erez A P, Cavada B S, Sanz L. Biochem. J., 2008, 409: 417-428
[4] Dam T K, Brewer C F. Chem. Rev., 2002, 102: 387-429
[5] Bouckaert J, Dewallef Y, Poortmans F, Wyns L, Loris R. J. Biol. Chem., 2000, 275: 19778-19787
[6] Jain D, Kaur K J, Salunke D M. Biophys. J., 2001, 80: 2912-2921
[7] Brown R D, Brewer C F, Koenig S H. Biochemistry, 1977, 16: 3883-3896
[8] Koenig S H, Brewer C F, Brown R D. Biochemistry, 1978, 17: 4251-4260
[9] Brewer C F, Brown R D, Koenig S H. Biochemistry, 1983, 22: 3691-3702
[10] Deng H X, Hentati A, Tainer J A, Iqbal Z, Cayabyab A, Hung W Y, Getzoff E. D, Hu P, Herzfeldt B, Roos R P, Warner C, Deng G, Soriano E, Smyth C, Parge H E, Ahmed A, Roses A D, Hallewell R A, Pericak-Vance M A, Siddique T. Science, 1993, 261: 1047-1051
[11] Galaleldeen A, Strange R W, Whitson L J, Antonyuk S V, Narayana N, Taylor A B, Schuermann J P, Holloway S P, Hasnain S S, Hart P J. Arch. Biochem. Biophys., 2009, 492: 40-47
[12] Lamb A L, Torres A S, O'Halloran T V, Rosenzweig A C. Nat. Struct. Biol., 2001, 8: 751-755
[13] Nordlund A, Leinartaite L, Saraboji K, Aisenbrey C, Zetterstrom G G P, Danielsson J, Logan D T, Oliveberg M. PNAS, 2009, 106: 9667-9672
[14] Lyons T J, Nersissian A, Huang H, Yeom H, Nishida C R, Graden J A, Gralla E B, ValentineJ S. J. Biochem. Inorg. Chem., 2000, 5: 189-203
[15] Kayatekin C, Zitzewitz J A, Matthews C R. J. Mol. Biol., 2008, 384: 540-555
[16] Leinartaite L, Saraboji K, Nordlund A, Logan, D T, Oliveberg M. J. Am. Chem. Soc., 2010, 132: 13495-13504
[17] Rumfeldt J A O, Lepock J R, Meiering E M. J. Mol. Biol., 2009, 385: 278-298
[18] Potter S Z, Zhu H, Shaw B F, Rodriguez J A, Doucette P A, Sohn S H, Durazo A, Faull K F, Gralla E B, Nersissian A M, Valentine J S. J. Am. Chem. Soc., 2007, 129: 4575-4583
[19] Strange R W, Antonyuk S V, Hough M A, Doucette P A, ValentineJ S, Hasnain S S. J. Mol. Biol., 2006, 356: 1152-1162
[20] 贺晓静(He X J), 丰九英(Feng J Y), 王伟(Wang W), 柴宝峰(Cai B F), 杨斌盛(Yang B S), 梁爱华Liang A H). 动物学报(Acta Zoologica Sinica), 2004, 50(3): 447-451
[21] Salsbury J, Baron A, Surek B, Melkonian M. J. Cell. Biol., 1984, 99: 962-970
[22] Salsbury J. Curr. Opin. Cell Biol., 1995, 7: 39-45
[23] Schieble E, Bornens M. Trends. Cell Biol., 1995, 5: 197-201
[24] Charbonnier J B, Renaud E, Miron S, Le Du M H, Blouquit Y, Duchambon P, Christova P, Shosheva A, Rose T, Angulo J F, Craescu C T. J. Mol. Biol., 2007, 373: 1032-1046
[25] 任列香(Ren L X), 赵亚琴(Zhao Y Q), 丰九英(Feng J Y), 贺晓静(He X J), 梁爱华(Liang A H), 杨斌盛(Yang B S). 无机化学学报(Chin. J. Inorg. Chem.), 2006, 22(1): 87-90
[26] Li G T, Wang Z J, Zhao Y Q, Ren L X, Liang A H, Yang B S. Spectrochim. Acta A, 2007, 67(5): 1189-1193
[27] Zhao Y Q, Feng J Y, Liang A H, Yang B S. Spectrochim. Acta A, 2009, 71: 1756-1761
[28] Zhou B J, Wang Z W, Tian Y N, Wang Z J, Yang B S. Electrochimica Acta, 2010, 55: 4124-4129
[29] Liu W, Duan L, Zhao Y Q, Liang A H, Yang B S. Chinese Sci. Bullet., 2010, 55: 3118-3122
[30] Zhao Y Q, Yan J, Feng Y N, Liang A H, Yang B S. J. Photochem. Photobiol. B, 2011, 105: 60-68.
[31] Zhao Y Q, Yan J, Song L, Feng Y N, Liang A H, Yang B S. Spectrochim. Acta A, 2012, 87: 163-170
[32] Zhao Y Q, Yan J, Song L, Feng Y N, Liang A H, Yang B S. J. Fluoresc., 2012, 22: 485-494
[33] Wang Z J, Zhao Y Q, Ren L X, Li G T, Liang A H, Yang B S. J. Photochem. Photobiol. A, 2007, 186: 178-186
[34] Wang Z J, Ren L X, Zhao Y Q, Li G T, Liang A H, Yang B S. Spectrochim. Acta A, 2007, 66: 1323-1326
[35] 杨斌盛(Yang B S), 李国亭(Li G T), 王志军(Wang Z J), 赵亚琴(Zhao Y Q), 段炼(Duan L). 山西大学学报(自然科学版)(J. Shanxi Univ. Nat. Sci. Ed.), 2007, 30: 224-228
[36] Wang Z J, Ren L X, Zhao Y Q, Li G T, Duan L, Liang A H, Yang B S. Spectrochim. Acta A, 2008, 70: 892-897
[37] Liu W, Duan L, Zhao B, Zhao Y Q, Liang A H, Yang B S. Health, 2010, 2: 262-267
[38] 杨斌盛(Yang B S), 刘文(Liu W), 任列香(Ren L X), 段炼(Duan L), 赵亚琴(Zhao Y Q), 王志军(Wang Z J). 山西大学学报(自然科学版) (J. Shanxi Univ. Nat. Sci. Ed. ), 2009, 32: 572-576
[39] Duan L, Zhao Y Q, Wang Z J, Li G T, Liang A H, Yang B S. J. Inorg. Biochem., 2008, 102: 268-277
[40] Zhao Y Q, Song L, Liang A H, Yang B S. J. Photochem. Photobiol. B, 2009, 95: 26-32
[41] Duan L, Liu W, Wang Z J, Liang A H, Yang B S. J. Biol. Inorg. Chem., 2010, 15: 995-1007
[42] 赵冰(Zhao B), 段炼(Duan L), 刘文(liu W), 赵亚琴(Zhao Y Q), 杨斌盛(Yang B S). 无机化学学报(Chin. J. Inorg. Chem. ), 2011, 27(2): 245-250
[43] Zhao Y Q, Feng J Y, Liang A H, Yang B S. Chin. Sci. Bullet., 2007, 52(23): 3216-3220
[44] Zhao Y Q, Feng J Y, Wang Z J, Liang A H, Yang B S. Spectrochim. Acta A, 2008, 70(4): 884-887
[45] Zhao Y Q, Diao X L, Yan J, Feng Y N, Wang Z J, Liang A H, Yang B S. J. Luminescence, 2012, 132: 924-930
[46] Hunter T. Cell, 1995, 80: 225-236
[47] Graves J D, Krebs E G. Pharmacol. Therm., 1999, 82: 111-121
[48] Joseph A A. Chem. Rev., 2001, 101: 2271-2290
[49] Martindale V E, Salisbury J L. J. Cell Sci., 1990, 96: 395-402
[50] Salisbury J L, Sanders M A, Harpst L. J. Cell Biol., 1987, 105: 1799-805
[51] Zhao Y Q, Yan J, Chao J B, Liang A H, Yang B S. J. Biol. Inorg. Chem., 2013, 18: 123-136
[52] Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J. J. Biol. Chem., 2001, 276: 18665-18672
[53] Molinier J, Ramos C, Fritsch O, Hohn B. Plant Cell, 2004, 16: 1633-1643
[54] 冯亚楠(Feng Y N). 山西大学硕士论文(Master dissertation of Shanxi University), 2012
[55] Michalek J L, Besold A N, Michel S L J. Dalton Trans., 2011, 40: 12619-12632
[56] Lee S J, Michalek J L, Besold A N, Rokita S E, Michel S L J. Inorg. Chem., 2011, 50: 5442-5450
[57] Michel S L J, Guerrerio A L, Berg J M. Biochemistry, 2003, 42: 4626-4630
[58] Loughlin F E, Mansfield R E, Vaz P M, McGrath A P, Setiyaputra S, Gamsjaeger R, Chen E S, Morris B J, Guss J M, Mackay J P. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 5581-5586
[59] Amodeo P, Morelli M A C, Ostuni A, Battistuzzi G, Bavoso A. Biochemistry, 2006, 45: 5517-5526
[60] Dominguez C, Folkers G E, Boelens R. Handbook of Metalloproteins, New York: Wiley and Sons, 2004. vol. 3, 338-351
[61] Besold A N, Lee S J, Michel S L J, Sue N L, Cymet H J. J. Biol. Inorg. Chem., 2010, 15: 583-590
[62] Posewitz M C, Wilcox D E. Chem. Res. Toxicol., 1995, 8: 1020-1028
[63] Wang Z H, Feng L S, Matskevich V, Venkataraman K, Parasuram P, Laity J H. J. Mol. Biol., 2006, 357: 1167-1183
[64] Michalek J L, Lee S J, Michel S L J. J. Inorg. Biochem., 2012, 112: 32-38
[65] Ghering A B, Shokes J E, Scott R A, Omichinski J G, Godwin H A. Biochemistry, 2004, 43: 8346-8355
[66] Blasie1a C A, Berg J M. Inorg. Chem., 2000, 39: 348-351
[67] Lovering R, Hanson I M, Borden K L B, Martin S, O'reilly N J, Evans G, Rahmanii D, Pappinii D J C, Trowsdale J, Freemont P S. Proc. Natl. Acad. Sci. U. S. A., 1993, 90: 2112-2116
[68] Magyara J S, Godwin H A. Anal. Biochem., 2003, 320: 39-54
[69] Klemba M, Gardner K H, Marino S, Regan L. Struct. Biol., 1995, 2: 368-373
[70] Atar D, Backx P H, Appel M M, Gao W D, Marban E. J. Biol. Chem., 1995, 270: 2473-2477
[71] Segal D J, Crotty J W, Bhakta M S, Barbas C F, Horton N C. J. Mol. Biol., 2006, 363: 405-421
[72] Mishra A, Eathiraj S, Corvera S, Lambright D G. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 10866-10871
[73] Bird A J, McCall K, KramerM, Blankman E, Winge D R, Eide D J. EMBO J., 2003, 22: 5137-5146
[74] Hudson B P, Martinez-Yamout M A, Dyson H J, Wright P E. Nat. Struct. Mol. Biol., 2004, 11: 257-264
[75] diTargiani R C, Lee S J, Wassink S, MichelS L J. Biochemistry, 2006, 45: 13641-13649
[76] Zheng N, Schulman B A, Song L, Miller J J, Jeffrey P D, Wang P, Chu C, Koepp D M, Elledge S J, Pagano M, Conaway R C, Conaway J W, Harper J W, Pavletich N P. Nature, 2002, 416: 703-709
[77] Bellon S F, Rodgers K K, SchatzD G, Coleman J E, Steitz T A. Nat. Struct. Mol. Biol., 1997, 4: 586-591

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[5] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[6] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[7] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[8] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[9] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[12] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[13] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[14] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[15] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.