English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 744-751 DOI: 10.7536/PC121003 前一篇   后一篇

• 综述与评论 •

手性季鏻盐相转移催化剂在不对称反应中的应用

喻理德1, 崔汉峰*1, 樊浩1, 任淑慧2, 林艳1   

  1. 1. 江西中医学院药学院 南昌 330004;
    2. 江西中医学院临床医学院 南昌 330004
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 崔汉峰 E-mail:cuihanfeng@126.com
  • 基金资助:

    江西省青年科学基金项目(No. 20122BAB213006)、江西省教育厅青年基金项目(No. GJJ12538)和江西中医学院博士启动基金项目(No.Y049)资助

Chiral Quaternary Phosphonium Salts in Asymmetric Catalysis

Yu Lide1, Cui Hanfeng*1, Fan Hao1, Ren Shuhui2, Lin Yan1   

  1. 1. College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China;
    2. College of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-05-24 Published:2013-04-15

手性相转移催化是不对称催化领域的重要分支之一,扮演着越来越重要的角色。本论文综述了几类新型手性季鏻盐催化剂的设计合成,及其在催化不对称Henry反应、不对称氢磷酰化反应、不对称烷基化反应、不对称Michael加成反应、不对称Mannich反应、不对称aldol反应、不对称质子化反应及不对称胺化反应中的催化活性和对映选择性,重点介绍了不同催化剂和反应底物之间立体效应和电子效应的影响,并对手性季鏻盐催化剂的发展进行了展望。

Chiral phase-tranfer catalysis plays an important role in modern asymmetric synthesis and organic synthesis chemistry. This review focuses on the progress of chiral quaternary phosphonium salts as phase-transfer catalysts reported in recent years, and their application in asymmetric catalytic reactions, including Henry reaction, hydrophosphonylation reaction, alkylation reaction, Michael addition reaction, Mannich reaction, aldol reaction, protonation reaction and amination reaction. Steric and electrical effects of these catalysts are emphasized, future prospects for development of chiral quaternary phosphonium salts are also described in this article. Contents
1 Introduction
2 Early works
3 Chiral P-spiro tetraaminophosphonium salts and diaminodioxaphosphonium salts
3.1 Asymmetric Henry reaction
3.2 Asymmetric hydrophosphonylation reaction
3.3 Asymmetric alkylation reaction
3.4 Asymmetric Michael addition reaction
3.5 Asymmetric Mannich reaction
3.6 Asymmetric aldol reaction
3.7 Asymmetric protonation reaction
4 Chiral tetraalkylphosphonium salts
4.1 Asymmetric amination reaction of β-keto esters and benzofuranones
4.2 Asymmetric Michael addition reaction of 3-aryloxindoles
4.3 Asymmetric Mannich reaction of 3-aryloxindoles
5 Conclusion and outlook

中图分类号: 

()

[1] Maruoka K, Ooi T. Chem. Rev., 2003, 103: 3013-3028
[2] Ooi T, Maruoka K. Angew. Chem. Int. Ed., 2007, 46: 4222-4266
[3] Bak? T, Bak? P, Szöllõsy Á, Czugler M, Keglevich G, Tõke L. Tetrahedron: Asymmetry, 2002, 13: 203-209
[4] Hashimoto T, Maruoka K. Chem. Rev., 2007, 107: 5656-5682
[5] Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc., 1999, 121: 6519-6520
[6] Shibuguchi T, Fukuta Y, Akachi Y, Sekine A, Ohshima T, Shibasaki M. Tetrahedron Lett., 2002, 43: 9539-9543
[7] Ooi T, Sakai D, Takeuchi M, Tayama E, Maruoka K. Angew. Chem. Int. Ed., 2003, 42: 5868-5870
[8] Ooi T, Ohara D, Fukumoto K, Maruoka K. Org. Lett., 2005, 7: 3195-3197
[9] Okada A, Shibuguchi T, Ohshima T, Masu H, Yamaguchi K, Shibasaki M. Angew. Chem. Int. Ed., 2005, 44: 4564-4567
[10] Liu W J, Lv B D, Gong L Z. Angew. Chem. Int. Ed., 2009, 48: 6503-6506
[11] Ooi T, Ohara D, Tamura M, Maruoka K. J. Am. Chem. Soc., 2004, 126: 6844-6845
[12] Hofstetter C, Wilkinson P S, Pochapsky T C. J. Org. Chem., 1999, 64: 8794-8800
[13] Wernera T. Adv. Synth. Catal., 2009, 351: 1469-1481
[14] Enders D, Nguyen T V. Org. Biomol. Chem., 2012, 10: 5327-5331
[15] Shioiri T, Ando A, Masui M. Phase Transfer Catalysis: Mechanism and Syntheses, ACS Symposium Series, Vol. 659, (Ed. Halpern M E). American Chemical Society, Washington DC, 1997. 136-147
[16] Manabe K. Tetrahedron Lett., 1998, 39: 5807-5810
[17] Manabe K. Tetrahedron, 1998, 54: 14465-14476
[18] Uraguchi D, Sakaki S, Ooi T. J. Am. Chem. Soc., 2007, 129: 12392-12393
[19] Uraguchi D, Nakamura S, Ooi T. Angew. Chem. Int. Ed., 2010, 49: 7562-7565
[20] Uraguchi D, Ito T, Nakamura S, Sakaki S, Ooi T. Chem. Lett., 2009, 38: 1052-1053
[21] Suyama K, Sakai Y, Matsumoto K, Saito B, Katsuki T. Angew. Chem. Int. Ed., 2010, 49: 797 -799
[22] Nakamura S, Hayashi M, Hiramatsu Y, Shibata N, Funahashi Y, Toru T. J. Am. Chem. Soc., 2009, 131: 18240-18241
[23] Wang F, Liu X H, Cui X, Xiong Y, Zhou X, Feng X M. Chem. Eur. J., 2009, 15: 589-592
[24] Uraguchi D, Ito T, Ooi T. J. Am. Chem. Soc., 2009, 131: 3836-3837
[25] Uraguchi D, Ito T, Nakamura S, Ooi T. Chem. Sci., 2010, 1: 488-490
[26] Uraguchi D, Asai Y, Ooi T. Angew. Chem. Int. Ed., 2009, 48: 733-737
[27] Uraguchi D, Asai Y, Seto Y, Ooi T. Synlett, 2009, (4): 658-660
[28] Dondoni A, Massi A. Angew. Chem. Int. Ed., 2008, 47: 4638-4660
[29] Itoh K, Kanemasa S. J. Am. Chem. Soc., 2002, 124: 13394-13395
[30] Liu K, Cui H F, Nie J, Dong K Y, Li X J, Ma J A. Org. Lett., 2007, 9: 923-925
[31] Enders D, H黷tl M R M, Grondal C, Raabe G. Nature, 2006, 441: 861-863
[32] Uraguchi D, Nakashima D, Ooi T. J. Am. Chem. Soc., 2009, 131: 7242-7243
[33] Uraguchi D, Kinoshita N, Kizu T, Ooi T. Synlett, 2011, (9): 1265-1267
[34] Uraguchi D, Ueki Y, Ooi T. Chem. Sci., 2012, 3: 842-845
[35] Uraguchi D, Ueki Y, Ooi T. Angew. Chem. Int. Ed., 2011, 50: 3681-3683
[36] Uraguchi D, Ueki Y, Ooi T. J. Am. Chem. Soc., 2008, 130: 14088-14089
[37] Ishihara K, Nakamura S, Kaneeda M, Yamamoto H. J. Am. Chem. Soc., 1996, 118: 12854-12855
[38] Uraguchi D, Kinoshita N, Ooi T. J. Am. Chem. Soc., 2010, 132: 12240-12242
[39] Corbett M T, Uraguchi D, Ooi T, Johnson J S. Angew. Chem. Int. Ed., 2012, 51: 4685-4689
[40] Marigo M, Juhl K, Jøgensen K A. Angew. Chem. Int. Ed., 2003, 42: 1367-1369
[41] Liu T Y, Cui H L, Zhang Y, Jiang K, Du W, He Z Q, Chen Y C. Org. Lett., 2007, 9: 3671-3674
[42] List B. J. Am. Chem. Soc., 2002, 124: 5656-5657
[43] He R J, Wang X S, Hashimoto T, Maruoka K. Angew. Chem. Int. Ed., 2008, 47: 9466-9468
[44] He R J, Maruoka K. Synthesis, 2009, (13): 2289-2292
[45] Zhu C L, Zhang F G, Meng W, Nie J, Cahard D, Ma J A. Angew. Chem. Int. Ed., 2011, 50: 5869-5872
[46] He R J, Ding C H, Maruoka K. Angew. Chem. Int. Ed., 2009, 48: 4559-4561

[1] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[2] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[3] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[4] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[5] 张宇, 刘小华, 林丽丽, 冯小明*. 催化不对称傅-克反应研究进展[J]. 化学进展, 2018, 30(5): 491-504.
[6] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[7] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[8] 张金帅, 于凤丽, 袁冰, 解从霞, 于世涛. 溶剂在反应控制相转移催化反应中的影响[J]. 化学进展, 2018, 30(2/3): 304-313.
[9] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[10] 张永丽, 张瑞, 常宏宏, 魏文珑, 李兴. 手性催化剂在不对称羰基ene反应中的应用[J]. 化学进展, 2014, 26(09): 1492-1505.
[11] 靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华. 超分子凝胶的手性功能应用:手性分子识别与不对称催化[J]. 化学进展, 2014, 26(06): 919-930.
[12] 李高伟, 王晓娟, 赵文献, 鲁刘杰, 刘冠军, 王敏灿. Trost氮杂半冠醚手性配体在不对称催化反应中的应用[J]. 化学进展, 2012, 24(0203): 348-360.
[13] 林丽丽 刘小华 冯小明. 手性三齿席夫碱金属络合物催化的不对称反应*[J]. 化学进展, 2010, 22(07): 1353-1361.
[14] 金子林 刘宁 刘春. 温控液/液两相催化进展*[J]. 化学进展, 2010, 22(07): 1295-1309.
[15] 徐立进 易兵 党丽敏 汤卫军. 离子液体中的不对称催化反应*[J]. 化学进展, 2010, 22(07): 1254-1273.
阅读次数
全文


摘要