English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 785-798 DOI: 10.7536/PC121001 前一篇   后一篇

• 综述与评论 •

温度敏感性药物载体及其在肿瘤热化疗中的应用

屈阳1, 李建波*1,2, 任杰*1,3   

  1. 1. 同济大学材料科学与工程学院纳米与生物高分子材料研究所 上海 201804;
    2. 同济大学化学系 上海 200092;
    3. 同济大学先进土木工程材料教育部重点实验室 上海 201804
  • 收稿日期:2012-10-01 修回日期:2012-11-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 李建波, 任杰 E-mail:lijianbo@tongji.edu.cn;renjie6598@126.com
  • 基金资助:

    国家科技支撑计划课题(No. 2012BAI15B06)、上海市科学技术委员会纳米技术专项(No. 11nm0505100)、中国博士后科学基金项目(No. 2012M510116)和中央高校基本科研业务费专项资金项目(No. 0500219160)资助

Thermo-Sensitive Drug Delivery and Relevant Applications on Thermo-Chemotherapy

Qu Yang1, Li Jianbo*1,2, Ren Jie*1,3   

  1. 1. Institute of Nano- and Bio-Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;
    2. Department of Chemistry, Tongji University, Shanghai 200092, China;
    3. Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 201804, China
  • Received:2012-10-01 Revised:2012-11-01 Online:2013-05-24 Published:2013-04-15

温度敏感性材料由于其理化性质对温度变化高度敏感,同时相变温度又易于调控,因而成为条件响应型药物控释载体中的研究热点。多种类型的温敏性药物载体,包括脂质体、聚合物囊泡、聚合物胶束,经过多年的研究和优化,其稳定性得到进一步的提高,而相变温度也实现了在较宽范围内的随意调整,可同时适用于病理性的高热和局部人工热疗等多种方式的温敏靶向性释药。并且,由于局部热疗可以有效控制温敏载体的药物释放,同时,热疗还能有效增强化疗药物的细胞毒性,因此温敏药物载体在肿瘤化疗和热化疗领域具有独特的应用潜力。本综述简要回顾了温敏性载体在药物载体领域的研究现状。在此基础上,从对肿瘤热化疗原理、发展现状、疗效影响因素的角度,进一步综述了温敏性药物载体在肿瘤热化疗领域的研究进展,特别关注了复合型温敏载体,因为这类载体结合了具有光热/磁热效应的纳米颗粒而兼具自升温能力,因而在靶向性热化疗中独具优势。最后,本文结合热化疗的影响因素,对温敏性载体在肿瘤热化疗领域的发展方向进行了展望。

Due to the effectiveness of hyperthermia on significant enhancement of drug cytotoxicity, thermo-chemotherapy has become an extraordinarily encouraging approach to optimize cancer therapy by combing hyperthermia and chemotherapy. Moreover, a great number of in vitro/vivo researches and random clinic trials have confirmed its effectiveness, which is affected greatly by thermal dose. Meanwhile, hyperthermia is also a critical factor on triggering drug release of thermal-sensitive drug delivery. Accordingly, it is an optimal design that thermal-sensitive drug carriers integrate with local hyperthermia to realize the targeted thermo-chemotherapy. Therefore, the thermal-sensitive drug carriers displayed a unique potential and applied prospection on targeted thermo-chemotherapy, which contributed to increasing drug concentration, enhancing drug cytotoxicity, lowering effective dose and alleviating side effects further. In this review, the research situation of thermal-sensitive drug carriers on chemotherapy and its advantage on thermo-chemotherapy were summarized briefly as the applied background. In addition, the biological rationales and research situation of thermo-chemotherapy were expounded. Based on aforementioned researches, the review focused on the research situation of the thermal-sensitive drug delivery on thermo-chemotherapy. Furthermore, the review highlighted the composite thermal-sensitive carriers containing functional photothermal/magnetocaloric nanoparticles, because their self-heating and self-imaging can be untilized for precise targeting and monitoring. Finally, the review analyzed and stressed the relaltionship between properties of thermal-sensitive nanocarriers and optimal TER temperature, and pointed out development tendency of composite thermal-sensitive carriers on thermal-chemotherapy. Contents
1 Introduction
2 Thermal-sensitive drug delivery
2.1 Thermal-sensitive liposomes and polymer vesicles
2.2 Thermal-sensitive polymer micelles
2.3 Advantage of thermal-sensitive drug delivery
3 Thermo-chemotherapy of cancer
3.1 Principle of thermo-chemotherapy of cancer
3.2 Current situation of thermo-chemotherapy
3.3 Effect of hyperthermia on thermo-chemotherapy
4 Applications of thermal-sensitive drug delivery on thermo-chemotherapy
4.1 Single thermal-sensitive drug delivery
4.2 Composited thermal-sensitive drug delivery
5 Conclusion and outlook

中图分类号: 

()

[1] Chandrawati R, Odermatt P D, Chong S F, Price A D, Stadler B, Caruso F. Nano Lett., 2011, 11: 4958-4963
[2] Kim D, Zhong G G, Lee E S, You H B. Mol. Pharm., 2009, 6: 1353-1362
[3] You J, Shao R, Wei X, Gupta S, Li C. Small, 2010, 6: 1022-1031
[4] Bidwell G L, Fokt I, Priebe W, Raucher D. Biochem. Pharma., 2007, 73: 620-631
[5] Schrama D, Reisfeld R A, Becker J C. Nat. Rev. Drug Discov., 2006, 5: 147-159
[6] Mimeault M, Hauke R, Mehta P P, Batra S K. J. Cell Mol. Med., 2007, 11: 981-1011
[7] Mimeault M, Batra S K. Drug Discov. Today, 2010, 15: 354-364
[8] Gray-Schopfer V, Wellbrock C, Marais R. Nature, 2007, 445: 851-857
[9] Rosen H, Abribat T. Nat. Rev. Drug Discov., 2005, 4: 381-385
[10] Mimeault M, Hauke R, Batra S K. Clin. Pharmacol. Ther., 2008, 83: 673-691
[11] Le Tourneau C, Faivre S, Raymond E. Cancer Treat. Rev., 2008, 34: 37-48
[12] Rosa D D, Ismael G, Lago L D, Awada A. Cancer Treat. Rev., 2008, 34: 61-80
[13] Kintzel P E, Dorr R T. Cancer Treat. Rev., 1995, 21: 33-64
[14] Jaracz S, Chen J, Kuznetsova L V, Ojima I. Bioorg. Med. Chem., 2005, 13: 5043-5054
[15] Schimmel K J, Richel D J, van den Brink R B, Guchelaar H J. Cancer Treat. Rev., 2004, 30: 181-191
[16] Helm C W, Randall-Whitis L, Martin R S Ⅲ, Metzinger D S, Gordinier M E, Parker L P, Edwards R P. Gynecol. Oncol., 2007, 105: 90-96
[17] Agostinelli E, Belli F, Vedova L D, Marra M, Crateri P, Arancia G. Int. J. Oncol., 2006, 28: 1543-1553
[18] Schildkopf P, Ott O J, Frey B, Wadepohl M, Sauer R, Fietkau R, Gaipl U S. Curr. Med. Chem., 2010, 17: 3045-3057
[19] Issels R. Onkologie, 1999, 22: 374-381
[20] Westermann A M, Jones E L, Schem B C, Steen-Banasik E M, Koper P, Mella O, Uitterhoeve A L, Wit R, Velden J, Burger C, Wilt C L, Dahl O, Prosnitz L R, Zee J. Cancer, 2005, 104: 763-770
[21] Urano M, Kuroda M, Nishimura Y. Int. J. Hyperthermia, 1999, 15: 79-107
[22] Moroz P, Jones S K, Gray B N. Int. J. Hyperthermia, 2002, 18: 267-284
[23] Li Z Q, Guan J J. Expert Opin. Drug Del., 2011, 8: 991-1007
[24] Zha L S, Banik B, Alexis F. Soft Matter, 2011, 7: 5908-5916
[25] 汤玉峰(Tang Y F), 杜予民(Du Y M). 化学进展(Progress in Chemistry), 2008, 20: 239-244
[26] Du J Z, O’Reilly R K. Soft Matter, 2009, 5: 3544-3561
[27] Kono K. Adv. Drug Deliv. Rev., 2001, 53: 307-319
[28] Anyarambhatla G R, Needham D. J. Liposomes Res., 1999, 9: 491-506
[29] Lindner L H, Eichhorn M E, Eibl H, Teichert N, Schmitt-Sody M, Issels R D, Dellian M. Clin. Cancer Res., 2004, 10: 2168-2178
[30] Smet M, Langereis S, Bosch S, Grüll H. J. Control. Release, 2010, 143: 120-127
[31] Kono K, Ozawa T, Yoshida T, Ozaki F, Ishizaka Y, Maruyama K, Kojima C, Harada A, Aoshima S. Biomaterials, 2010, 31: 7096-7105
[32] Xia Y, Yin X C, Burke N A D, Stolver H D H. Macromolecules, 2005, 38: 5937-5943
[33] Schild H G. Prog. Polym. Sci., 1992, 17: 163-249
[34] Najafi F, Sarbolouki M N. Biomaterials, 2003, 24: 1175-1182
[35] Cohn D, Lando G, Sosnik A, Garty S, Levi A. Biomaterials, 2006, 27: 1718-1727
[36] Liu G Q, Guan C L, Zou W J, Zhu H, Peng J, Zhang L Q, Bi X Q. J. Polym. Res., 2007, 14: 461-465
[37] Mertoglu M, Garnier S, Laschewsky A, Skrabania K, Storsberg J. Polymer, 2005, 46: 7726-7740
[38] Xu H F, Meng F H, Zhong Z Y. J. Mater. Chem., 2009, 19: 4183-4190
[39] Chen X, Ding X, Zheng Z, Peng Y. New J. Chem., 2006, 30: 577-582
[40] Wei H, Ravarian R, Dehn S, Perrier S, Dehghani F. J. Polym. Sci. Part A: Polym. Chem., 2011, 49: 1809-1820
[41] Zhang J, Misra R D. Acta Biomater., 2007, 3: 838-850
[42] Li J B, Ren J, Cao Y, Yuan W Z. React. Funct. Polym., 2009, 69: 870-876
[43] Li W, Li J, Gao J, Li B, Xia Y, Meng Y, Yu Y, Chen H, Dai J, Wang H, Guo Y. Biomaterials, 2011, 32: 3832-3844
[44] Wei H, Cheng S X, Zhang X Z, Zhuo R X. Prog. Polym. Sci., 2009, 34: 893-910
[45] Koning G A, Eggermont A M M, Lindner L H. Pharm. Res., 2010, 27: 1750-1754
[46] Konings A W, Ruifrok A C. Radiat. Res., 1985, 102: 86-98
[47] Hunt C R, Pandita R K, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, Gupta A, Rief N, Horikoshi N, Baskaran R, Lee J H, Löbrich M, Paull T T, Roti J L R, Pandita T K. Cancer Res., 2007, 67: 3010-3017
[48] Iliakis G, Wu W, Wang M. Int. J. Hyperthermia, 2008, 24: 17-29
[49] Liu F F, Miller N, Levin W, Zanke B, Cooper B, Henry M, Sherar M D, Pintilie M, Hunt J W, Hill R P. Int. J. Hyperthermia, 1996, 12: 197-208
[50] Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. J. Immunol., 1997, 158: 4341-4350
[51] Lewis P N. Can. J. Biochem., 1977, 55: 736-746
[52] Defer N, Kitzis A, Kruh J, Brahms S, Brahms J. Nucleic Acids Res., 1977, 4: 2293-2306
[53] Webb H, Lubner M G, Hinshaw J L. Semin. Roentgenol., 2011, 46: 133-141
[54] Song C W, Park H J, Lee C K, Griffin R. Int. J. Hyperthermia, 2005, 21: 761-767
[55] Gellermann J, Hildebrandt B, Issels R, Ganter H, Wlodarczyk W, Budach V, Felix R, Tunn P U, Reichardt P, Wust P. Cancer, 2006, 107: 1373-1382
[56] Kong G, Anyarambhatla G, Petros W P, Braun R D, Colvin O M, Needham D, Dewhirst M W. Cancer Res., 2000, 60: 6950-6957
[57] Roti J L R. Int. J. Hyperthermia, 2008, 24: 3-15
[58] Stangl S, Wortmann A, Guertler U, Multhoff G. J. Immunol., 2006, 176: 6270-6276
[59] Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H. Crit. Rev. Oncol. Hematol., 2002, 43: 33-56
[60] Jäättelä M. Ann. Med., 1999, 31: 261-271
[61] Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A, Gastpar R, Issels R D. Int. J. Hyperthermia, 2002, 18: 563-575
[62] Drabløs F, Feyzi E, Aas P A, Vaagbø C B, Kavli B, Bratlie M S, Peña-Diaz J, Otterlei M, Slupphaug G, Krokan H E. DNA Repair, 2004, 3: 1389-1407
[63] Rietbroek R C, van de Vaart P J, Haveman J, Blommaert F A, Geerdink A, Bakker P J, Veenhof C H. J. Cancer Res. Clin. Oncol., 1997, 123: 6-12
[64] Kelland L. Nat. Rev. Cancer, 2007, 7: 573-584
[65] Pilati P, Mocellin S, Rossi C R, Scalerta R, Alaggio R, Giacomelli L, Geroni C, Nitti D, Lise M. World J. Surg., 2003, 27: 640-646
[66] Binaschi M, Bigioni M, Cipollone A, Rossi C, Goso C, Maggi C A, Capranico G, Animati F. Curr. Med. Chem. Anticancer Agents, 2001, 1: 113-130
[67] Cividalli A, Livdi E, Ceciarelli F, Piscitelli M, Pasqualetti P, Cruciani G, Danesi D T. Int. J. Hyperthermia, 2000, 16: 61-71
[68] Hildebrandt B, Wust P. Cancer Treat. Res., 2007, 134: 185-193
[69] Issels R D. Eur. J. Cancer, 2008, 44: 2546-2554
[70] Overgaard J, Suit H D. Cancer Res., 1979, 39: 3248-3253
[71] Haveman J, Rietbroek R C, Geerdink A, Van Rijn J, Bakker P J. Int. J. Cancer, 1995, 62: 627-630
[72] Van Bree C, Beumer C, Rodermond H M, Haveman J, Bakker P J. Int. J. Hyperthermia, 1999, 15: 549-556
[73] Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag P M. Lancet Oncol., 2002, 3: 487-497
[74] Hamazoe R, Maeta M, Kaibara N. Cancer, 1994, 73: 2048-2052
[75] Gori J, Castaño R, Toziano M, Häbich D, Staringer J, De Quirós D G, Felci N. Int. J. Gynecol. Cancer, 2005, 15: 233-239
[76] Tagami T, Ernsting M J, Li S D. J. Control. Release, 2011, 152: 303-309
[77] Gong W, Wang Z, Liu N, Lin W, Wang X, Xu D, Liu H, Zeng C, Xie X, Mei X, Lü W. Biol. Pharm. Bull., 2011, 34: 1058-1064
[78] Yarmolenko P S, Zhao Y, Landon C, Spasojevic I, Yuan F, Needham D, Viglianti B L, Dewhirst M W. Int. J. Hyperthermia, 2010, 26: 485-498
[79] Li Y, Pan S, Zhang W, Du Z. Nanotechnology, 2009, 20: art. no. 065104
[80] Oni Y, Soboyejo W O. Mater. Sci. Eng. C, 2012, 32: 24-30
[81] Huang X, El-Sayed I H, Qian W, El-Sayed M A. J. Am. Chem. Soc., 2006, 128: 2115-2120
[82] Tang H Y, Shen S, Guo J, Chang B S, Jiang X G, Yang W L. J. Mater. Chem., 2012, 22: 16095-16103
[83] Zhang Z J, Wang L M, Wang J, Jiang X M, Li X H, Hu Z J, Ji Y L, Wu X C, Chen C Y. Adv. Mater., 2012, 24: 1418-1423
[84] Hauck T S, Jennings T L, Yatsenko T, Kumaradas J C, Chan W C W. Adv. Mater., 2008, 20: 3832-3838
[85] Paasonen L, Sipilä T, Subrizi A, Laurinmäki P, Butcher S J, Rappolt M, Yaghmur A, Urtti A, Yliperttula M. J. Control. Release, 2010, 147: 136-143
[86] Agarwal A, Mackey M A, El-Sayed M A, Bellamkonda R V. ACS Nano, 2011, 5: 4919-4926
[87] Park J H, Maltzahn G, Ong L L, Centrone A, Hatton T A, Ruoslahti E, Bhatia S N, Sailor M J. Adv. Mater., 2010, 22: 880-885
[88] Silva A C, Oliveira T R, Mamani J B, Malheiros S M, Malavolta L, Pavon L F, Sibov T T, Amaro E Jr, Tannús A, Vidoto E L, Martins M J, Santos R S, Gamarra L F. Int. J. Nanomedicine, 2011, 6: 591-603
[89] Jeyadevan B. J. Ceram. Soc. Jpn., 2010, 118: 391-401
[90] Rosensweig R E. J. Magn. Magn. Mater., 2002, 252: 370-374
[91] Hergt R, Andrä W, d’Ambly C G, Hilger I, Kaiser W A, Richter U, Schmidt H G. IEEE Trans. Magn., 1998, 34: 3745-3754
[92] Elsherbini A A, Saber M, Aggag M, El-Shahawy A, Shokier H A. Magn. Reson. Imaging, 2011, 29: 272-280
[93] Purushotham S, Ramanujan R V. Acta Biomater., 2010, 6: 502-510
[94] Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Aoshima S. Small, 2011, 7: 1683-1689
[95] Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Döblinger M, Banerjee R, Bahadur D, Plank C. J. Control. Release, 2010, 142: 108-121
[96] Todaka T, Kishino T, Enokizono M. J. Magn. Magn. Mater., 2008, 320: E702-E707
[97] Ortiz E C, Perez O P, Voyles P, Gutierrez G, Tomar M S. Microelectr. J., 2009, 40: 677-680
[98] Cao Y, Ren J, Li J B, Liu Y. J. Biomater. Sci. Polym. Ed., 2011, 22: 1473-1486
[99] Nica V, Sauer H M, Embs J, Hempelmann R. J. Phys. Condens. Matter, 2008, 20: art. no. 204115
[100] Sharma R, Chen C J. J. Nanopart. Res., 2009, 11: 671-689
[101] Zhang D S, Tang Q S, Wang Z Y, Fan X S. Chin. J. Phys. Med. Rehabil., 2006, 28: 102-104
[102] Wang L, Zhang J, An Y L, Wang Z Y, Liu J, Li Y T, Zhang D S. Nanotechnology, 2011, 22: art. no. 315102

[1] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[2] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[3] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.
[4] 李卓棠,吴佩芳. 稀土材料的磁热效应及其应用[J]. 化学进展, 1995, 7(02): 140-.