English
新闻公告
More
化学进展 DOI: 10.7536/PC120937 前一篇   

• 综述与评论 •

石墨烯及其复合材料在水处理中的应用

肖蓝1, 王祎龙2, 于水利1, 唐玉霖*1   

  1. 1. 同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 20009;
    2. 同济大学医学院 生物医学工程与纳米科学研究院 上海 200092
  • 收稿日期:2012-09-01 修回日期:2012-10-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 唐玉霖 E-mail:tangyulin@tongji.edu.com
  • 基金资助:

    国家自然科学基金项目(No. 21007048)和国家科技支撑计划项目(No. 2012BAJ25B06,2012BAF03B06)资助

Graphene-Containing Composite Materials for Water Treatment

Xiao Lan1, Wang Yilong2, Yu Shuili1, Tang Yulin*1   

  1. 1. College of Environmental Science and Engineering, State Key Laboratory of Control and Resource Reuse, Tongji University, Shanghai 20009;
    2. School of Medicine, The Institute for Biomedical Engineering & Nano Science, Tongji University, Shanghai 200092, China
  • Received:2012-09-01 Revised:2012-10-01 Online:2013-02-24 Published:2012-12-28

石墨烯(graphene,GE)是一种由sp2杂化的碳原子以六边形排列形成的周期性蜂窝状二维碳质新材料,具有比表面积大、电子迁移率高和化学稳定性强等特性。本文重点总结了近年来石墨烯及其复合材料应用于水处理吸附剂及光催化剂两个方面的研究进展。石墨烯及其复合材料对于处理重金属、有机污染物等污染物质的吸附效果好,吸附容量高;与光催化材料结合后,石墨烯由于其独特的物理化学特性有效增强了复合材料的光催化特性。最后对各种石墨烯及其复合材料在水处理中的应用作出了评价,同时对它们在水处理中的应用前景做了展望。

Graphene is the basic building block of all graphitic forms of carbon, consisting of a single atomic layer of sp2 hybridized carbon atoms arranged in a honeycomb structure. It has many unique properties, including large specific surface area, high electron mobility, good chemical stability and so on. Its synthesis has been investigated in many different fields with potential applications. Importantly, it could be used in pollutants removal in water treatment, which has been drawing more and more attention in recent years. A series of studies have been conducted on graphene-based materials including graphene-based adsorbents and graphene-based photocatalysts. Different kinds of graphene-based adsorbents such as graphene and graphene-containing materials have been gradually applied in the removal of toxic compounds such as heavy metals, dyes, inorganic anions, etc. In addition, graphene-based photocatalysts, including graphene-complex photocatalyst composites, graphene oxide-complex photocatalyst composites and reduced graphene oxide-complex photocatalyst composites are also discussed in pollutants removal and environmental remediation. In the end, the problems in the application of graphene-based materials in water treatment are poited out, then the roles of graphene-based materials in pollutants removal are summarised and prospects for future research in this field are proposed. Contents
1 Introduction
2 Fabrication and properties of graphene
3 Graphene-based adsorbents in water treatment
3.1 Graphene and graphene-containing materials
3.2 Graphene oxide and graphene oxide-containing materials
3.3 Reduced graphene oxide and reduced graphene oxide-containing materials
4 Graphene-based photocatalysts in water treatment
4.1 Graphene-complex photocatalyst composites
4.2 Graphene oxide-complex photocatalyst composites
4.3 Reduced graphene oxide-complex photocatalyst composites
5 Conclusions and outlook

中图分类号: 

()

[1] Geim A K, Novoselov K S. Nat. Mater., 2007, 6: 183-191
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669
[3] Lee C G, Wei X D, Kysar J W, Hone J. Science, 2008, 321: 385-388
[4] Stoller M D, Park S J, Zhu Y W, An J H, Ruoff R S. Nano Lett., 2008, 8: 3498-3502
[5] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8: 902-907
[6] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146: 351-355
[7] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559-2567
[8] Lu K, Zhao G X, Wang X K. Chin. Sci. Bull., 2012, 57: 1223-1234
[9] Liu Y, Liu C Y, Liu Y. Appl. Surf. Sci., 2011, 257: 5513-5518
[10] Hao L Y, Song H J, Zhang L C, Wan X Y, Tang Y R, Lv Y. J. Colloid Interface Sci., 2012, 369: 381-387
[11] Young R J, Kinloch I A, Gong L, Novoselov K S. Compos. Sci. Technol., 2012, 72: 1459-1476
[12] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S. Nature, 2007, 446: 60-63
[13] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324: 1312-1314
[14] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Rohrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T. Nat. Mater., 2009, 8: 203-207
[15] Stankovich S, Piner R D, Nguyen S T, Ruoff R S. Carbon, 2006, 44: 3342-3347
[16] Liu T H, Li Y H, Du Q J, Sun J K, Jiao Y Q, Yang G M, Wang Z H, Xia Y Z, Zhang W, Wang K L, Zhu H W, Wu D H. Colloid Surface B, 2012, 90: 197-203
[17] Wu T, Cai X, Tan S Z, Li H Y, Liu J S, Yang W D. Chem. Eng. J., 2011, 173: 144-149
[18] Park S, Ruoff R S. Nature Nanotechnology, 2009, 4: 217-224
[19] Brodie B C. Philos. Trans. R. Soc. London, 1859, 149: 249-259
[20] Staudenmaier L. Ber. Dtsch. Chem. Ges., 1898, 31: 1481-1487
[21] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339-1339
[22] 甘晓初(Gan X C). 中国科学技术大学硕士论文(Master Dissertation of University of Science and Technology of China), 2011
[23] Pasricha R, Gupta S, Srivastava A K. Small, 2009, 5: 2253-2259
[24] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282-286
[25] Seger B, Kamat P V. J. Phys. Chem. C, 2009, 113: 7990-7995
[26] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Chem. Mater., 2007, 19: 4396-4404
[27] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487-1491
[28] Murugan A V, Muraliganth T, Manthiram A. Chem. Mater., 2009, 21: 5004-5006
[29] Ramesha G K, Kumara A V, Muralidhara H B, Sampath S. J. Colloid Interface Sci., 2011, 361: 270-277
[30] Pan B, Xing B S. Environ. Sci. Technol., 2008, 42: 9005-9013
[31] Li Y H, Zhang P, Du Q J, Peng X J, Liu T H, Wang Z H, Xia Y Z, Zhang W, Wang K L, Zhu H W, Wu D H. J. Colloid Interface Sci., 2011, 363: 348-354
[32] 吕鹏(Lv P), 冯奕钰(Feng Y Y), 张学全(Zhang X Q), 李瑀(Li Y), 封伟(Feng W). 中国科学: 技术科学(Science China: Technological Sciences), 2010, 40(11): 1247-1256
[33] Song H J, Zhang L C, He C L, Qu Y, Tian Y F, Lv Y. J. Mater. Chem., 2011, 21: 5972-5977
[34] Cheng J S, Du J, Zhu W J. Carbohyd. Polym., 2012, 88: 61-67
[35] Ren Y M, Yan N, Wen Q, Fan Z J, Wei T, Zhang M L, Ma J. Chem. Eng. J., 2011, 175: 1-7
[36] Guo J, Wang R Y, Tjiu W W, Pan J S, Liu T X. J. Hazard. Mater., 2012, 225: 63-73
[37] Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M. Carbon, 2004, 42: 2929-2937
[38] Matsuo Y, Tahara K, Sugie Y. Carbon, 1997, 35: 113-120
[39] Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J. J. Mater. Chem., 2010, 20: 3035-3039
[40] Xu C, Wang X, Yang L C, Wu Y P. J. Solid State Chem., 2009, 182: 2486-2490
[41] Machida M, Mochimaru T, Tatsumoto H. Carbon, 2006, 44: 2681-2688
[42] Yang S T, Chang Y L, Wang H F, Liu G B, Chen S, Wang Y W, Liu Y F, Cao A N. J. Colloid Interface Sci., 2010, 351: 122-127
[43] Li Y H, Ding J, Luan Z K, Di Z C, Zhu Y F, Xu C L, Wu D H, Wei B Q. Carbon, 2003, 41: 2787-2792
[44] An H K, Park B Y, Kim D S. Water Res., 2001, 35: 3551-3556
[45] Yang S T, Chen S, Chang Y L, Cao A N, Liu Y F, Wang H F. J. Colloid Interface Sci., 2011, 359: 24-29
[46] Sun L, Yu H W, Fugetsu B. J. Hazard. Mater., 2012, 203: 101-110
[47] Gao Y, Li Y, Zhang L, Huang H, Hu J J, Shah S M, Su X G. J. Colloid Interface Sci., 2012, 368: 540-546
[48] Babel S, Kurniawan T A. J. Hazard. Mater., 2003, 97: 219-243
[49] Ngah W S W, Ab Ghani S, Kamari A. Bioresour. Technol., 2005, 96: 443-450
[50] He Y Q, Zhang N N, Wang X D. Chinese Chem. Lett., 2011, 22: 859-862
[51] Liu L, Li C, Bao C L, Jia Q, Xiao P F, Liu X T, Zhang Q P. Talanta, 2012, 93: 350-357
[52] Zhang N N, Qiu H X, Si Y M, Wang W, Gao J P. Carbon, 2011, 49: 827-837
[53] Fan L, Luo C, Li X, Lu F, Qiu H, Sun M. J. Hazard. Mater., 2012, 215/216: 272-279
[54] Fan L, Luo C, Sun M, Li X, Lu F, Qiu H. Bioresour. Technol., 2012, 114: 703-706
[55] Cheng Y, Tan R Q, Wang W Y, Guo Y Q, Cui P, Song W J. J. Mater. Sci., 2010, 45: 5347-5352
[56] Zhang M, Cheng D, He X W, Chen L X, Zhang Y K. Chemistry- an Asian Journal, 2010, 5: 1332-1340
[57] Lu Z Y, Dai J, Song X N, Wang G, Yang W S. Colloids Surf. Physicochem. Eng. Aspects, 2008, 317: 450-456
[58] He F A, Fan J T, Ma D, Zhang L M, Leung C, Chan H L. Carbon, 2010, 48: 3139-3144
[59] Yao Y J, Miao S D, Yu S M, Ma L P, Sun H, Wang S. J. Colloid Interface Sci., 2012, 379: 20-26
[60] Zhang K, Dwivedi V, Chi C, Wu J. J. Hazard. Mater., 2010, 182: 162-168
[61] Hu X G, Mu L, Wen J P, Zhou Q X. J. Hazard. Mater., 2012, 213/214: 387-392
[62] Sreeprasad T S, Maliyekkal S M, Lisha K P, Pradeep T. J. Hazard. Mater., 2011, 186: 921-931
[63] 柏嵩(Bo S), 沈小平(Sheng X P). 化学进展(Progress in Chemistry), 2010, 22 (11): 2107-2117
[64] Wang P F, Ao Y H, Wang C, Hou J, Qian J. J. Hazard. Mater., 2012, 223: 79-83
[65] Min Y L, Zhang K, Zhao W, Zheng F C, Chen Y C, Zhang Y G. Chem. Eng. J., 2012, 193/194: 203-210
[66] Zhang K, Kemp K C, Chandra V. Mater. Lett., 2012, 81: 127-130
[67] Ghasemi S, Setayesh S R, Habibi-Yangjeh A, Hormozi-Nezhad M R, Gholami M R. J. Hazard. Mater., 2012, 199: 170-178
[68] Gao Z Y, Liu J L, Xu F, Wu D P, Wu Z L, Jiang K. Solid State Sci., 2012, 14: 276-280
[69] Zhang X F, Quan X, Chen S, Yu H T. Appl. Catal. B -Environ., 2011, 105: 237-242
[70] Nguyen-Phan T D, Pham V H, Shin E W, Pham H D, Kim S, Chung J S, Kim E J, Hur S H. Chem. Eng. J., 2011, 170: 226-232
[71] Lee Y C, Yang J W. J. Ind. Eng. Chem., 2012, 18: 1178-1185
[72] Jiang G D, Lin Z F, Chen C, Zhu L H, Chang Q, Wang N, Wei W, Tang H Q. Carbon, 2011, 49: 2693-2701
[73] Gao Y Y, Pu X P, Zhang D F, Ding G Q, Shao X, Ma J. Carbon, 2012, 50: 4093-4101
[74] Yoo D H, Cuong T V, Pham V H, Chung J S, Khoa N T, Kim E J, Hahn S H. Curr. Appl. Phys., 2011, 11: 805-808
[75] Khoa N T, Pyun M W, Yoo D H, Kim S W, Leem J Y, Kim E J, Hahn S H. Thin Solid Films, 2012, 520: 5417-5420
[76] Neppolian B, Bruno A, Bianchi C L, Ashokkumar M. Ultrason. Sonochem., 2012, 19: 9-15
[77] Li B X, Liu T X, Wang Y F, Wang Z F. J. Colloid Interface Sci., 2012, 377: 114-121
[78] Wang F, Zhang K. J. Mol. Catal. A: Chem., 2011, 345: 101-107
[79] Nguyen-Phan T D, Pham V H, Kweon H, Chung J S, Kim E J, Hur S H, Shin E W. J. Colloid Interface Sci., 2012, 367: 139-147
[80] Lv T, Pan L K, Liu X J, Lu T, Zhu G, Sun Z. J. Alloy. Compd., 2011, 509: 10086-10091
[81] Zhou X, Shi T J, Zhou H. Appl. Surf. Sci., 2012, 258: 6204-6211
[82] Liu X J, Pan L K, Zhao Q F, Lv T, Zhu G, Chen T Q, Lu T, Sun Z, Sun C Q. Chem. Eng. J., 2012, 183: 238-243
[83] Shi Y H, Feng S H, Cao C S. Mater. Lett., 2000, 44: 215-218
[84] McDowell N A, Knight K S, Lightfoot P. Chem. Eur. J., 2006, 12: 1493-1499
[85] Fu H B, Pan C S, Yao W Q, Zhu Y F. J. Phys. Chem. B, 2005, 109: 22432-22439
[86] Zhang C, Zhu Y F. Chem. Mater., 2005, 17: 3537-3545
[87] Ma D K, Huang S M, Chen W X, Hu S W, Shi F F, Fan K L. J. Phys. Chem. C, 2009, 113: 4369-4374
[88] Ma H, Shen J, Shi M, Lu X, Li Z, Long Y, Li N, Ye M. Appl. Catal. B: Environ., 2012, 121/122: 198-205
[89] Lerf A, He H Y, Forster M, Klinowski J. J. Phys. Chem. B, 1998, 102: 4477-4482
[90] Wang X, Tian H, Yang Y, Wang H, Wang S, Zheng W, Liu Y. J. Alloy. Compd., 2012, 524: 5-12

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[5] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[6] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[7] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[8] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[13] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[14] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[15] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.