English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 179-191 DOI: 10.7536/PC120916 前一篇   后一篇

• 特约稿 •

细胞内活性小分子近红外荧光成像探针

王栩, 赵谦, 孙娟, 吕建政, 唐波*   

  1. 山东师范大学化学化工与材料科学学院 分子与纳米探针教育部重点实验室 农药医药中间体清洁生产 教育部工程技术中心 精细化学品清洁合成山东省重点实验室 济南 250014
  • 收稿日期:2012-09-01 修回日期:2012-10-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 唐波 E-mail:tangb@sdnu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2013CB933800)、国家自然科学基金项目(No. 21035003, 21227005, 20905042)、高等学校博士学科点专项科研基金项目(20113704130001)以及长江学者和创新团队发展计划资助

Near-Infrared Fluorescence Imaging Probes for Intracellular Reactive Small Molecules

Wang Xu, Zhao Qian, Sun Juan, Lü Jianzheng, Tang Bo*   

  1. Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
  • Received:2012-09-01 Revised:2012-10-01 Online:2013-02-24 Published:2012-12-28

近年来,随着生命科学的不断发展,人们对细胞内活性小分子在病理、生理等方面的功能研究越来越深入。荧光成像作为一种直观、原位的可视化观测技术在小分子检测方面得到了广泛应用,其中基于近红外分子与纳米探针的荧光成像技术因具有背景干扰低、对细胞损伤小、样品穿透性强、检测灵敏度高等优点,显示了较好的应用前景。本文评述了近年来近红外荧光探针用于细胞内活性小分子成像检测的应用及进展,主要讨论该类方法在活性氧物质、金属离子、H+、阴离子及巯基化合物的分析应用,并对该方法的应用前景进行了展望。

With the development of life sciences, a lot of energy has been put into the research on the pathological and physiological functions of intracellular reactive small molecules (RSMs). As an efficient technique suitable for visualization in vivo, confocal fluorescence imaging has been applied to the monitor of RSMs in biological samples. The near-infrared fluorescence imaging based on molecular probes and nano probes has shown attractive and extensive application prospect in virtue of low background, less cell photodamage, deeper penetration of tissue, and relatively high sensitivity. This review summarizes the recent progress on near-infrared fluorescent probes for cellular RSMs, of which reactive oxygen species, metal ions, H+, anion ions, and thiols are mainly introduced. Particularly, future study and prospect are envisioned. Contents
1 Introduction
2 Near-infrared fluorescent probes for reactive oxygen species
3 Near-infrared fluorescent probes for metal ions
4 Near-infrared fluorescent probes for pH
5 Near-infrared fluorescent probes for anion ions
6 Near-infrared fluorescent probes for thiols
7 Conclusion and outlook

中图分类号: 

()

[1] Baker M. Nature, 2010, 463: 977-980
[2] Fernández-Suárez M, Ting A Y. Nat. Rev. Mol. Cell Biol., 2008, 9: 929-943
[3] Weissleder R, Ntziachristos V. Nat. Med., 2003, 9: 123-128
[4] Weissleder R. Nat. Biotechnol., 2001, 19: 316- 317
[5] Frangioni J V. Curr. Opin. Chem. Biol., 2003, 7: 626-634
[6] Moncada S, Palmer R M, Higgs E A. Pharmacol. Rev., 1991, 43: 109-142
[7] Suzuki Y J, Forman H J. Free Radic. Biol. Med., 1997, 22: 269-285
[8] Babior B M. Am. J. Med., 2000, 109: 33-44
[9] Azzi A, Davies K J, Kelly F. FEBS Lett., 2004, 558: 3-6
[10] Xu K H, Tang B, Huang H, Yang G W, Chen Z Z, Li P, An L G. Chem. Commun., 2005, 5974-5976
[11] Karton-Lifshin N, Segal E, Omer L, Portnoy M, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc., 2011, 133: 10960-10965
[12] Xu K H, Liu X, Tang B. ChemBioChem, 2007, 8: 453- 458
[13] Li P, Tang B, Xing Y L, Li P M, Yang G W, Zhang L. Analyst, 2008, 133: 1409-1415
[14] Xu K H, Wang L L, Qiang M M, Wang L Y, Li P, Tang B. Chem. Commun., 2011, 7386-7388
[15] Xu K H, Sun S X, Li J, Li L, Qiang M M, Tang B. Chem. Commun., 2012, 684-686
[16] Xu K H, Chen H C, Tian J W, Ding B Y, Xie Y X, Qiang M M, Tang B. Chem. Commun., 2011, 9468-9470
[17] Tian J W, Chen H C, Zhuo L H, Xie Y X, Li N, Tang B. Chem. Eur. J., 2011, 17: 6626-6634
[18] Yu F B, Li P, Li G Y, Zhao G J, Chu T S, Han K L. J. Am. Chem. Soc., 2011, 133: 11030-11033
[19] Song C H, Ye Z Q, Wang G L, Yuan J L, Guan Y F. Chem. Eur. J., 2010, 16: 6464-6472
[20] Shepherd J, Hilderbrand S A, Waterman P, Heinecke J W, Weissleder R, Libby P. Chem. Biol., 2007, 14: 1221-1231
[21] Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. J. Am. Chem. Soc., 2011, 133: 5680-5682
[22] Yuan L, Lin W Y, Yang Y T, Chen H. J. Am. Chem. Soc., 2012, 134: 1200-1211
[23] Sasaki E, Kojima H, Nishimatsu H, Urano Y, Kikuchi K, Hirata Y, Nagano T. J. Am. Chem. Soc., 2005, 127: 3684-3685
[24] Chen Y G, Guo W H, Ye Z Q, Wang G L, Yuan J L. Chem. Commun., 2011, 6266-6268
[25] Kundu K, Knight S F, Willett N, Lee S, Taylor W R, Murthy N. Angew. Chem. Int. Ed., 2009, 48: 299-303
[26] Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, Nagano T. J. Am. Chem. Soc., 2010, 132: 2795-2801
[27] Kiyose K, Hanaoka K, Oushiki D, Nakamura T, Kajimura M, Suematsu M, Nishimatsu H, Yamane T, Terai T, Hirata Y, Nagano T. J. Am. Chem. Soc., 2010, 132: 15846-15848
[28] Okuda K, Okabe Y, Kadonosono T, Ueno T, Youssif B G M, Kizaka-Kondoh S, Nagasawa H. Bioconjugate Chem., 2012, 23: 324-329
[29] Lee Y E K, Ulbrich E E, Kim G, Hah H, Strollo C, Fan W, Gurjar R, Koo S, Kopelman R. Anal. Chem., 2010, 82: 8446-8455
[30] Lebedev A Y, Cheprakov A V, Sakad?i Dc' S, Boas D A, Wilson D F, Vinogradov S A. ACS Appl. Mater. Inter., 2009, 1: 1292-1304
[31] De Silva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, Rice T E. Chem. Rev., 1997, 97: 1515-1566
[32] Qi X, Jun E, Xu L, Kim S, Hong J, Yoon Y, Yoon J. J. Org. Chem., 2006, 71: 2881-2884
[33] Wu F Y, Bae S W, Hong J. Tetrahedron Lett., 2006, 47: 8851-8854
[34] He Q, Miller E W, Wong A P, Chang C J. J. Am. Chem. Soc., 2006, 128: 9316-9317
[35] Vallee B L, Falchuk K H. Phys. Rev., 1993, 73: 79-118
[36] Tang B, Huang H, Xu K H, Tong L L, Yang G W, Liu X, An L G. Chem. Commun., 2006, 3609-3611
[37] Smith B A, Akers W J, Leevy W M, Lampkins A J, Xiao S Z, Wolter W, Suckow M A, Achilefu S, Smith B D. J. Am. Chem. Soc., 2010, 132: 67-69
[38] Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T. J. Am. Chem. Soc., 2004, 126: 12470-12476
[39] Tang B, Cui L J, Xu K H, Tong L L, Yang G W, An L G. ChemBioChem, 2008, 9: 159-1164
[40] Li P, Duan X, Chen Z Z, Liu Y, Xie T, Fang L B, Li X R, Yin M, Tang B. Chem. Commun., 2011, 7755-7757
[41] Hirayama T, van de Bittner G C, Gray L W, Lutsenko S, Chang C J. Proc. Natl. Acad. Sci. USA, 2012, 109: 2228-2233
[42] Cao X W, Lin W Y, Wan W. Chem. Commun., 2012, 6247-6249
[43] Li P, Fang L B, Zhou H, Zhang W, Wang X, Li N, Zhong H B, Tang B. Chem. Eur. J., 2011, 17: 10520-10523
[44] Ye Y, Bloch S, Xu B, Achilefu S. Bioconjugate Chem., 2008, 19: 225-234
[45] Matsui A, Umezawa K, Shindo Y, Fujii T, Citterio D, Oka K, Suzuki K. Chem. Commun., 2011, 10407-10409
[46] Egawa T, Hanaoka K, Koide Y, Ujita S, Takahashi N, Ikegaya Y, Matsuki N, Terai T, Ueno T, Komatsu T, Nagano T. J. Am. Chem. Soc., 2011, 133: 14157-14159
[47] Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, Ise T, Murakami T, Yoshida T, Nomoto M, Kohno K. Cancer Treat. Rev., 2003, 29: 541-549
[48] Chesler M. Phys. Rev., 2003, 83: 1183-1221
[49] Paradiso A M, Tsien R Y, Machen T E. Nature, 1987, 325: 447-450
[50] Yuli I, Oplatka A. Science, 1987, 235: 340-342
[51] Hansen S H, Sandvig K, Deurs B V. J. Cell Biol., 1993, 121: 61-72
[52] Schindler M, Grabski S, Hoff E, Simon S M. Biochem., 1996, 35: 2811-2817
[53] Holopainen J M, Saarikoski J, Kinnunen P K, Jarvela I. Eur. J. Biochem., 2001, 268: 5851-5856
[54] Tang B, Yu F B, Li P, Tong L L, Duan X, Xie T, Wang X. J. Am. Chem. Soc., 2009, 131: 3016-3023
[55] Tang B, Liu X, Xu K H, Huang H, Yang G W, An L G. Chem. Commun., 2007, 3726-3728
[56] Murtagh J, Frimannsson D O, O'shea D F. Org. Lett., 2009, 11: 5386-5389
[57] Myochin T, Kiyose K, Hanaoka K, Kojima H, Terai T, Nagano T. J. Am. Chem. Soc., 2011, 133: 3401-3409
[58] Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, Achilefu S. Bioconjugate Chem., 2011, 22: 777-784
[59] Berezin M Y, Guo K, Akers W, Northdurft R E, Culver J P, Teng B, Vasalatiy O, Barbacow K, Gandjbakhche A, Griffiths G L, Achilefu S. Biophys. J., 2011, 100: 2063-2072
[60] Pal R, Parker D. Chem. Commun., 2007, 474-476
[61] Chiu Y L, Chen S A, Chen J H, Chen K J, Chen H L, Sung H W. ACS Nano, 2010, 4: 7467-7474
[62] Hilderbrand S A, Kelly K A, Niedre M, Weissleder R. Bioconjugate Chem., 2008, 19: 1635-1639
[63] Murray B S, New E J, Pal R, Parker D. Org. Biomol. Chem., 2008, 6: 2085-2094
[64] Cao X W, Lin W Y, He L W. Org. Lett., 2011, 13: 4716-4719
[65] Zhu W H, Huang X M, Guo Z Q, Wu X M, Yu H H, Tian H. Chem. Commun., 2012, 1784-1786
[66] Guo Z Q, Nam S W, Park S, Yoon J. Chem. Sci., 2012, 3: 2760-2765
[67] Tian D H, Qian Z S, Xia Y S, Zhu C Q. Langmuir, 2012, 28: 3945-3951
[68] 黄池宝(Huang C B), 樊江莉(Fan J L), 彭孝军(Peng X J), 孙世国(Sun S G). 化学进展 (Progress in Chemistry), 2007, 19: 1806-1812
[69] 黄池宝(Huang C B), 易道生(Yi D S), 冯承浩(Feng C H), 任安祥(Ren A X), 孙世国(Sun S G). 化学进展(Progress in Chemistry), 2010, 22: 2408-2419
[70] 王楠(Wang N), 徐淑坤(Xu S K), 王文星(Wang W X). 化学进展 (Progress in Chemistry), 2007, 19: 408-413

[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[4] 黄大一. 古生物化学中的凝聚态化学反应[J]. 化学进展, 2022, 34(7): 1626-1641.
[5] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[6] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[9] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[10] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[11] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[12] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[13] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[14] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[15] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.