English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 661-668 DOI: 10.7536/PC120903 前一篇   后一篇

• 特约稿 •

离子液体在蛋白质萃取分离中的应用

陈旭伟, 毛全兴, 王建华*   

  1. 东北大学分析科学研究中心 沈阳 110819
  • 收稿日期:2012-09-01 修回日期:2012-12-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 王建华 E-mail:jianhuajrz@mail.neu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21275027, 21235001,21075013)资助

Ionic Liquids in Extraction/Separation of Proteins

Chen Xuwei, Mao Quanxing, Wang Jianhua*   

  1. Research Centre for Analytical Sciences, Northeastern University, Shenyang 110819, China
  • Received:2012-09-01 Revised:2012-12-01 Online:2013-05-24 Published:2013-04-15

离子液体具有独特的物化性质如热稳定性好、不挥发、不易燃和良好的生物兼容性,近年来作为传统有机溶剂的替代物在有机合成、电化学、催化和萃取分离等领域得到了广泛应用。本文简要综述了以离子液体为媒介的萃取体系在蛋白质分离富集和分析中的相关研究和应用进展,包括辅助萃取体系、直接萃取体系、双水相萃取体系、微乳萃取体系、结晶体系和基于离子液体的固相萃取体系等。

As a group of organic salts consisting entirely of ions (anions and cations), ionic liquids (ILs) have shown great promises as a potential alternative to conventional volatile toxic organic solvents due to their unique and attractive properties including negligible vapor pressure, nonflammability, high chemical/thermal stability, low toxicity and favorable conductivity. These attractive features of ILs have made them as popular candidates in the wide applications of various fields including organic synthesis, extraction/separation, electrochemical analysis, catalysis and chemical sensors. Protein assay has long been a crucial issue in bio-sciences and other related fields. In this respect, the applications of ionic liquids to perform protein assays, including protein stability/activity investigations, protein extraction and isolation/purification, protein crystallization, separation of protein species and their detections, have received increasing attentions in the past few years. This can be attributed to the fact that ionic liquids provides a novel and highly efficient reaction medium, but meanwhile, they also serve as efficient participants in the various chemical/biological reaction processes. The recent applications of ionic liquid-based extraction systems in protein separations and assays are depicted in the present mini-review, including protein extraction in the presence of assistant extractants, direct extraction, aqueous two-phase extraction systems, emulsion extraction systems, crystallization of proteins in the presence of ionic liquids and ionic liquid-based solid-phase extraction systems. Contents
1 Introduction
2 IL-based extraction system in protein separation and assays
2.1 Assistant extraction system
2.2 Direct extraction system
2.3 Aqueous two-phase extraction system
2.4 Emulsion extraction system
2.5 Protein crystallization in the presence of ionic liquids
2.6 IL-based solid-phase extraction system
3 Conclusions and perspectives

中图分类号: 

()

[1] Walden P B. Acad. Imper. Sci. (St. Petersburg), 1914, 1800
[2] Hurley F H, Wier T P. J. Electrochem. Soc., 1951, 98: 203-206
[3] Wilkes J S, Zaworotko M J. J. Chem. Soc. Chem. Commun., 1992, 965-967
[4] Baker S N, McCleskey T M, Pandey S, Baker G A. Chem. Commun., 2004, 8: 940-941
[5] Fujita K, Forsyth M, MacFarlane D R, Reid R W, Elliott G D. Biotechnol. Bioeng., 2006, 94: 1209-1213
[6] Shimojo K, Nakashim K, Kamiy N, Goto M. Biomacromolecules, 2006, 7: 2-5
[7] Shimojo K, Kamiya N, Tani F, Naganawa H, Naruta Y, Goto M. Anal. Chem., 2006, 78: 7735-7742
[8] Kobuta F, Koyanagi Y, Nakashima K, Shimojo K, Kamiya N, Goto M. Solvent Extract. Res. Develop., 2007, 14: 115-120
[9] Tzeng Y P, Shen C W, Yu T. J. Chromatogr. A, 2008, 1193: 1-6
[10] Cheng D H, Chen X W, Shu Y, Wang J H. Talanta, 2008, 75: 1270-1278
[11] Fitzgerald M M, Churchill M J, McRee D E, Goodin D B. Biochem., 1994, 33: 3807-3818
[12] Cheng D H, Chen X W, Shu Y, Wang J H. Chinese J. Anal. Chem., 2008, 36: 1187-1190
[13] Ge L Y, Wang X T, Tan S N, Tsai H H, Yong J W H, Hua L. Talanta, 2010, 81: 1861-1864
[14] Kohno Y, Saita S, Murata M, Nakamura N, Ohno H. Polym. Chem., 2011, 2: 862-867
[15] Gutowski K E, Broker G A, Willauer H D, Huddleston J G, Swatloski R P, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2003, 125: 6632-6633
[16] Du Z, Yu Y L, Wang J H. Chem. Eur. J., 2007, 13: 2130-2137
[17] 邓凡政(Deng F Z), 郭东方(Guo D F). 分析化学(Chinese J. Anal. Chem. ), 2006, 34: 1451-1453
[18] Ventura S P M, Sousa S G, Freire M G, Serafim L S, Lima Á S, Coutinho J A P. J. Chromatogr. B, 2011, 879: 2679-2687
[19] Ventura S P M, de Barros R L F, de Pinho B J M, Soares C M F, Lima Á S, Coutinho J A P. Green Chem., 2012, 14: 734-740
[20] Pei Y C, Wang J J, Wu K, Xuan X P, Lu X J. Sep. Purif. Technol., 2009, 64: 288-295
[21] Pei Y C, Li Z Y, Liu L, Wang J J, Wang H Y. Sci. China Chem., 2010, 53: 1554-1560
[22] Cao Q, Quan L, He C Y, Li N, Li K A, Liu F. Talanta, 2008, 77: 160-165
[23] Dreyer S, Salim P, Kragl U. Biochem. Eng. J., 2009, 46: 176-185
[24] Lu Y M, Lu W J, Wang W, Guo Q W, Yang Y Z. Talanta, 2011, 85: 1621-1626
[25] Dreyer S, Kragl U. Biotechnol. Bioeng., 2008, 99: 1416-1424
[26] Shu Y, Cheng D, Chen X W, Wang J H. Sep. Purif. Technol., 2008, 64: 154-159
[27] Garlitz J A, Summers C A, Flowers R A, Borgstahl G E O. Acta Cryst. D, 1999, 55: 2037-2038
[28] Judge R A, Takahashi S, Longenecker K L, Fry E H, Abad-Zapatero C, Chiu M L. Cryst. Growth Des., 2009, 9: 3463-3469
[29] Pusey M L, Paley M S, Turner M B, Rogers R D. Cry. Growth Des., 2007, 7: 787-793
[30] Li X X, Xu X D, Dan Y Y, Feng J, Ge L, Zhang M L. Cryst. Res. Technol., 2008, 43: 1062-1068
[31] Hekmat D, Hebel D, Joswig S, Schmidt M, Weuster-Botz D. Biotechnol. Lett., 2007, 29: 1703-1711
[32] Chen X W, Ji Y P, Wang J H. Analyst, 2010, 135: 2241-2248
[33] Wang Z Z, Dang L P, Han Y, Jiang P P, Wei H Y. J. Agr. Food Chem., 2010, 58: 5444-5448
[34] Shu Y, Chen X W, Wang J H. Talanta, 2010, 81: 637-642
[35] 陈旭伟(Chen X W), 刘宇佳(Liu Y J), 舒杨(Shu Y), 王建华(Wang J H). 中国科学: 化学(Scientia Sinica Chimica), 2010, 40: 63-69
[36] Yuan S F, Deng Q L, Fang G Z, Pan M F, Zhai X R, Wang S. J. Mater. Chem., 2012, 22: 3965-3972
[37] Meng H, Chen X W, Wang J H. J. Mater. Chem., 2011, 21: 14857-14863
[38] 陈帅(Chen S), 张谦(Zhang Q), 王晓峰(Wang X F), 陈旭伟(Chen X W), 王建华(Wang J H). 中国科学: 化学(Scientia Sinica Chimica), 2011, 41: 1725-1731

[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[3] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[4] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[5] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[6] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[7] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[8] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[9] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[10] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[11] 刘耀阳, 刘志斌, 赵闯, 周羽, 高杨, 何辉. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(2/3): 219-229.
[12] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[13] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[14] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[15] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.