English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 821-831 DOI: 10.7536/PC120860 前一篇   后一篇

• 综述与评论 •

同步辐射红外显微光谱学和成像技术在分析化学中的应用

凌盛杰1, 黄郁芳*2, 黄蕾1, 邵正中1, 陈新*1   

  1. 1. 聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200433;
    2. 复旦大学材料科学系 国家微分析中心 上海 200433
  • 收稿日期:2012-08-01 修回日期:2012-12-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 黄郁芳 E-mail:chenx@fudan.edu.cn;yufangh@fudan.edu.cn
  • 基金资助:

    国家自然科学基金项目 (No. 20974025, 10979022) 资助

Application of Synchrotron FTIR Microspectroscopy and Mapping in Analytical Chemistry

Ling Shengjie1, Huang Yufang*2, Huang Lei1, Shao Zhengzhong1, Chen Xin*1   

  1. 1. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China;
    2. Department of Materials Science, National Microanalysis Center, Fudan University, Shanghai 200433, China
  • Received:2012-08-01 Revised:2012-12-01 Online:2013-05-24 Published:2013-04-15

同步辐射红外显微光谱作为一种新兴的分析技术,一方面利用了红外光谱可以同时表征有机和/或无机、结晶和/或无定形样品的特点,另一方面充分发挥了同步辐射高亮度和高空间分辨率的特性,因此在对小样品或小样品区域的表征上具有传统红外光谱无法比拟的优势。经过20多年的发展,同步辐射红外显微光谱技术已被广泛地应用于多种分析化学领域并取得了丰硕的研究成果。本文总结了最近几年同步辐射红外显微光谱学和成像技术在文化遗产和考古学、地球和空间科学以及化学和高分子科学中的研究和应用进展。

Synchrotron radiation based Fourier-transform infrared (S-FTIR) microspectroscopy is a new-developed technique, which combines the advantages of FTIR spectroscopy and synchrotron light source. FTIR spectroscopy is an easy, fast, and well-established analytical method to be wildly used in many fields, especially has the ability to characterize different samples (for instance, organic and inorganic materials, or crystalline and amorphous materials) in the same time. On the other hand, the ultra brightness and high spatial resolution of synchrotron light source ensure S-FTIR microspectroscopy is capable of analyzing small samples or small sample areas that conventional FTIR cannot do. After 20 years of development, S-FTIR has been widely used in a variety of analytical chemistry field and obtained an abundant research results. In our previous review, we discussed the application of S-FTIR microspectroscopy in biomedical field, so here we review recent applications of S-FTIR microspectroscopy in some other analytical chemistry areas, including cultural heritage and archaeology, earth and space science, and chemistry and polymer science. It is no doubt that S-FTIR microspectroscopy has become a more and more useful tool to determine the structure of small samples or small sample areas. In the future, a multibeam synchrotron imaging system, which combine a multibeam synchrotron source with focal plane array (FPA) detectors, with a greatly improved spatial resolution by reducing the diffraction limited spot size an order of magnitude to 0.54 μm × 0.54 μm, may further show the merit of S-FTIR technique on the characterization of small samples or small sample areas in various research fields. Contents
1 Introduction
2 Synchrotron infrared light source
3 Applications in the cultural heritage and archeology field
4 Applications in the earth and space science field
5 Applications in the chemistry and polymer science field
6 Outlook

中图分类号: 

()

[1] Schweizer E, Nagel J, Braun W, Lippert E, Bradshaw A M. Nucl. Instrum. Meth. A, 1985, 239: 630-634
[2] Dumas P, Miller L M, Tobin M J. Acta Phys. Pol. A, 2009, 115: 446-454
[3] Carr G L, Reffner J A, Williams G P. Rev. Sci. Instrum., 1995, 66: 1490-1492
[4] Carr G L, Hanfland M, Williams G P. Rev. Sci. Instrum., 1995, 66: 1643-1645
[5] Reffner J A, Martoglio P A, Williams G P. Rev. Sci. Instrum., 1995, 66: 1298-1302
[6] Martin M C, Schade U, Lerch P, Dumas P. Trac-Trend Anal. Chem., 2010, 29: 453-463
[7] 严佳萍(Yan J P), 邵正中(Shao Z Z), 陈新(Chen X), 黄郁芳(Huang Y F). 化学进展(Progress in Chemisty), 2008, 20(11): 1768-1778
[8] 贾启卡(Jia Q K). 强激光与粒子束(High Power Laser and Particle Beams), 2003, 15(6): 2-5
[9] Bertrand L, Robinet L, Thoury M, Janssens K, Cohen S X, Schoder S. Appl. Phys. A-Mater., 2012, 106: 377-396
[10] Cotte M, Dumas P, Taniguchi Y, Checroun E, Walter P, Susini J. C. R. Phys., 2009, 10: 590-600
[11] Perez-Alonso M, Castro K, Madariaga J M. Curr. Anal. Chem., 2006, 2: 89-100
[12] Font J, Alvado N S, Buti S, Enrich J. Anal. Chim. Act., 2007, 598: 119-127
[13] Bartoll J, Hahn O, Schade U. Stud. Conserv., 2008, 53: 1-8
[14] De Ryck I, Adriaens A, Pantos E, Adams F. Analyst, 2003, 128: 1104-1109
[15] Cotte M, Susini J, Sole V A, Taniguchi Y, Chillida J, Checroun E, Walter P. J. Anal. At. Spectrom., 2008, 23: 820-828
[16] Salvado N, Buti S, Nicholson J, Emerich H, Labrador A, Pradell T. Talanta, 2009, 79: 419-428
[17] Lluveras A, Boularand S, Andreotti A, Vendrell-Saz M. Appl. Phys. A-Mater., 2010, 99: 363-375
[18] Cotte M, Checroun E, Susini J, Walter P. Appl. Phys. a-Mater., 2007, 89: 841-848
[19] Cotte M, Dumas P, Richard G, Breniaux R, Walter P. Anal. Chim. Acta, 2005, 553: 105-110
[20] Mazel V, Richardin P, Debois D, Touboul D, Cotte M, Brunelle A, Walter P, Laprevote O. Anal. Chem., 2007, 79: 9253-9260
[21] Echard J P, Cotte M, Dooryhee E, Bertrand L. Appl. Phys. a-Mater., 2008, 92: 77-81
[22] Bertrand L, Robinet L, Cohen S X, Sandt C, Le Ho A S, Soulier B, Lattuati-Derieux A, Echard J P. Anal. Bioanal. Chem., 2011, 399: 3025-3032
[23] Reiche I, Lebon M, Chadefaux C, Muller K, Le Ho A S, Gensch M, Schade U. Anal. Bioanal. Chem., 2010, 397: 2491-2499
[24] Lebon M, Muller K, Bahain J J, Frohlich F, Falgueres C, Bertrand L, Sandt C, Reiche I. J. Anal. At. Spectrom., 2011, 26: 922-929
[25] Smith G D. J. Am. Inst. Conserv., 2003, 42: 399-406
[26] Salvado N, Buti S, Tobin M J, Pantos E, Prag A, Pradell T. Anal. Chem., 2005, 77: 3444-3451
[27] Sloggett R, Kyi C, Tse N, Tobin M J, Puskar L, Best S P. Vib. Spectrosc., 2010, 53: 77-82
[28] Vagnini M, Miliani C, Cartechini L, Rocchi P, Brunetti B G, Sgamellotti A. Anal. Bioanal. Chem., 2009, 395: 2107-2118
[29] Richardson E, Martin G, Wyeth P, Zhang X. Microchim. Acta, 2008, 162: 303-312
[30] Kendix E L, Prati S, Joseph E, Sciutto G, Mazzeo R. Anal. Bioanal. Chem., 2009, 394: 1023-1032
[31] Fukunaga K, Hosako I. C. R. Phys., 2010, 11: 519-526
[32] Della Ventura G, Bellatreccia F, Marcelli A, Guidi M C, Piccinini M, Cavallo A, Piochi M. Anal. Bioanal. Chem., 2010, 397: 2039-2049
[33] 郭立鹤(Guo L H). 矿物岩石地球化学通报(Bulletin of Mineralogy, Petrology and Geochemistry), 1995, 61-63
[34] 杨晓志(Yang X Z), 夏群科(Xia Q K), 杨燕(Yang Y), 李佩(Li P), 黄玉(Huang Y). 中国科学技术大学学报(Journal of University of Science and Technology of China), 2007, 37(8): 964-973
[35] 杨燕(Yang Y), 夏群科(Xia Q K), 冯敏(Feng M). 岩石学报(Acta Petrologica Sinica), 2011, 27(2): 566-578
[36] Grant K, Ingrin J, Lorand J P, Dumas P. Contrib. Mineral. Petrol., 2007, 154: 15-34
[37] Sommer H, Regenauer-Lieb K, Gasharova B, Siret D. Mineral. Petrol., 2008, 94: 1-8
[38] 施倪承(Shi N C), 李国武(Li G W), 马喆生(Ma J S), 熊明(Xiong M). 自然杂志(Chinese Journal of Nature), 2011, 33: 101-105
[39] Chamorro-Pérez E M, Daniel I, Chervin J C, Dumas P, Bass J D, Inoue T. Phys. Chem. Miner., 2006, 33: 502-510
[40] Sandford S A, Walker R M. Ap. J., 1985, 291: 838-851
[41] Flynn G J, Keller L P, Feser M, Wirick S, Jacobsen C. Geochim. Cosmochim. Acta, 2003, 67: 4791-4806
[42] Flynn G J, Keller L P, Jacobsen C, Wirick S. Advance in Space Research. Elsevier, 2004. 57-66
[43] Matrajt G, Caro G M M, Dartois E, Hendecourt L, Deboffle D, Borg J. Astron. Astrophys., 2005, 433: 979-995
[44] Matrajt G, Borg J, Raynal P I, Djouadi Z, d'Hendecourt L, Flynn G, Deboffle D. Astron. Astrophys., 2004, 416: 983-990
[45] Keller L P, Hony S, Bradley J P, Molster F J, Waters L, Bouwman J, de Koter A, Brownlee D E, Flynn G J, Henning T, Mutschke H. Nature, 2002, 417: 148-150
[46] Moroz L V, Schmidt M, Schade U, Hiroi T, Ivanova M A. Meteorit. Planet. Sci., 2006, 41: 1219-1230
[47] Quirico E, Raynal P I, Bourot-Denise M. Meteorit. Planet. Sci., 2003, 38: 795-811
[48] Sandford S A, Aleon J, Alexander C M O, Araki T, Bajt S, Baratta G A, Baratta G A, Borg J, Bradley, J P Brownlee D E, Brucato J R, Burchell M J, Busemann H, Butterworth A, Clemett S J, Cody G, Colangeli L, Cooper G, D'Hendecourt L, Djouadi Z, Dworkin J P, Ferrini G, Fleckenstein H, Flynn G J, Franchi I A, Fries M, Gilles M K, Glavin D P, Gounelle M, Grossemy F, Jacobsen C, Keller L P, Kilcoyne A L D, Leitner J, Matrajt G, Meibom A, Mennella V, Mostefaoui S, Nittler L R, Palumbo M E, Papanastassiou D A, Robert F, Rotundi A, Snead C J, Spencer M K, Stadermann F J, Steele A, Stephan T, Tsou P, Tyliszczak T, Westphal A J, Wirick S, Wopenka B, Yabuta H, Zare R N, Zolensky M E. Science, 2006, 314: 1720-1724
[49] Spencer M K, Zare R N. Science, 2007, 317: 1680c. DOI: 10. 1126/science. 1142407
[50] Sandford S A, Brownlee D E. Science, 2007;317: 1680d. DOI: 10. 1126/science. 1145013
[51] Zhang X, Ross P N, Kostecki R, Kong F, Sloop S, Kerr J B, Striebel K, Cairns E J, McLarnon F. J. Electrochem. Soc., 2001, 148: A463-A470
[52] Kox M H F, Domke K F, Day J P R, Rago G, Stavitski E, Bonn M, Weckhuysen B M. Angew. Chem. Int. Edit., 2009, 48: 8990-8994
[53] Stavitski E, Kox M H F, Swart I, de Groot F M F, Weckhuysen B M. Angew. Chem. Int. Edit., 2008, 3543-3547
[54] Canete S J P, Zhang Z Z, Kong L M, Schlegel V L, Plantz B A, Dowben P A, Lai R Y. Chem. Commun., 2011, 47: 11918-11920
[55] Beattie D A, Beaussart A, Mierczynska-Vasilev A, Harmer S L, Thierry B, Puskar L, Tobin M. Langmuir, 2012, 28: 1683-1688
[56] Weckhuysen B M. Angew. Chem. Int. Edit., 2009; 48: 4910-4943
[57] Beale A M, Jacques S D M, Weckhuysen B M. Chem. Soc. Rev., 2010, 39: 4656-4672
[58] Stavitski E, Weckhuysen B M. Chem. Soc. Rev., 2010, 39: 4615-4625
[59] Serrano F, Lopez G L, Jadraque M, Koper M, Ellis G, Cano P, Martin M, Garrido L. Biomaterials, 2007, 28: 650-660
[60] Ellis G, Marco C, Gomez M. Infrared Phys. Techn., 2004, 45: 349-364
[61] Vechambre C, Buleon A, Chaunier L, Jamme F, Lourdin D. Macromolecules, 2010, 43: 9854-9858
[62] De Giacomo O, Cesaro A, Quaroni L. Food Biophys., 2008, 3: 77-86
[63] Chen X, Li W J, Yu T Y. J. Polym. Sci. Pol. Phys., 1997, 35: 2293-2296
[64] Chen X, Knight D P, Shao Z Z, Vollrath F. Polymer, 2001, 42: 9969-9974
[65] Chen X, Shao Z Z, Marinkovic N S, Miller L M, Zhou P, Chance M R. Biophys. Chem., 2001, 89: 25-34
[66] Chen X, Knight D P, Shao Z Z, Vollrath F. Biochemistry, 2002, 41: 14944-14950
[67] 陈新(Chen X), 邵正中(Shao Z Z), Knight D P, Vollrath F. 化学学报(Acta Chimica Sinica), 2002, 60(12): 2203-2208
[68] 陈新(Chen X), 周丽(Zhou L), 邵正中(Shao Z Z), 周平(Zhou P), Knight D P, Vollrath F. 化学学报(Acta Chimica Sinica), 2003, 61(4): 625-629
[69] Chen X, Shao Z Z, Knight D P, Vollrath F. Proteins, 2007, 68: 223-231
[70] Chen X, Knight D P, Shao Z Z. Soft Matter, 2009, 5: 2777-2781
[71] Ling S J, Zhou L, Zhou W, Shao Z Z, Chen X. Mater. Lett., 2012, 81: 13-15
[72] Chen X, Cai H F, Ling S J, Shao Z Z, Huang Y F. Appl. Spectrosc., 2012, 66: 696-699
[73] Ling S J, Qi Z M, Knight D P, Shao Z Z, Chen X. Biomacromolecules, 2011, 12: 3344-3349
[74] Zhou G Q, Shao Z Z, Knight D P, Yan J P, Chen X. Adv. Mater., 2009, 21: 366-370
[75] Yan J P, Zhou G Q, Knight D P, Shao Z Z, Chen X. Biomacromolecules, 2010, 11: 1-5
[76] Nasse M J, Walsh M J, Mattson E C, Reininger R, Kajdacsy-Balla A, Macias V, Bharga R, Hirschmugl C J. Nat. Methods, 2011, 8: 413-416
[77] Kwak J T, Reddy R, Sinha S, Bhargava R. Anal. Chem., 2012, 84: 1063-1069
[78] Kastyak-Ibrahim M Z, Nasse M J, Rak M, Hirschmugl C, Del Bigio M R, Albensi B C, Gough K M. Neuroimage, 2012, 60: 376-383
[79] Hirschmugl C J, Gough K M. Appl. Spectrosc., 2012, 66: 475-491
[80] Chen L, Holman H Y N, Hao Z, Bechtel H A, Martin M C, Wu C, Chu S. Anal. Chem., 2012, 84: 4118-4125
[81] Caine S, Heraud P, Tobin M J, McNaughton D, Bernard C C A. Neuroimage, 2012, 59: 3624-3640
[82] Quaroni L, Zlateva T, Normand E. Anal. Chem., 2011, 83: 7371-7380
[83] Quaroni L, Zlateva T. Analyst, 2011, 136: 3219-3232
[84] Martin F L. Nat. Methods, 2011, 8: 385-387
[85] Gazi E, Lockyer N P, Vickerman J C, Gardner P, Dwyer J, Hart C A, Brown M D, Clarke N W, Miyan J. Appl. Surf. Sci., 2004, 231: 452-456
[86] Cheng X R, Qi Z M, Zhang G B, Chen Y H, Li T T, Pan G Q, Yin M. Appl. Surf. Sci., 2009, 256: 838-841
[87] Wang X, Chen X L, Qi Z M, Liu X C, Li W Z, Wang S Y. Spectrochim. Acta A, 2012, 91: 285-289
[88] 王欣(Wang X), 陈先良(Chen X L), 戚泽明(Qi Z M), 刘省存(Liu X C), 刘刚(Liu G), 黄大可(Huang D K), 田扬超(Tian Y C). 化学学报(Acta Chimica Sinica), 2011, 69(12): 1491-1495
[89] Wang X, Qi Z M, Liu X C, Wang S, Li C X, Liu G, Xing Y, Li T T, Tao J Q, Tian Y C. Cancer Epidemiol., 2010, 34: 453-456
[90] Wang X, Qi Z M, Wang S Y, Liu G, Gao H L, Tian Y C. Spectrochim. Acta A, 2011, 79: 1660-1662

[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 傅力, 张怀伟, 叶玮婷, 叶辰, 林正得. 固态电分析化学及其植物研究[J]. 化学进展, 2021, 33(8): 1440-1449.
[3] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[4] 宋志花, 李盛红, 杨刚强, 周娜, 陈令新. 人参皂苷类化合物样品前处理及分析检测[J]. 化学进展, 2020, 32(2/3): 239-248.
[5] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[6] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[7] 韩强, 王宗花, 张晓琼, 丁明玉. 石墨烯及其复合材料在样品前处理中的应用[J]. 化学进展, 2014, 26(05): 820-833.
[8] 凌盛杰, 邵正中, 陈新. 同步辐射红外光谱成像技术对细胞的研究[J]. 化学进展, 2014, 26(01): 178-192.
[9] 田宇, 朱才镇, 龚静华, 马敬红, 杨曙光, 徐坚. 纤维结构形态的原位同步辐射X射线散射及衍射研究[J]. 化学进展, 2013, 25(10): 1751-1762.
[10] 许志刚*, 刘智敏, 杨保民, 字富庭. 替代模板分子印迹技术在样品前处理中的应用[J]. 化学进展, 2012, 24(08): 1592-1598.
[11] 杨通在, 汪小琳. 国防领域放射分析化学研究进展[J]. 化学进展, 2011, 23(7): 1520-1526.
[12] 余琼卫, 冯钰锜. 液相沉积法(LPD)在分析化学中的应用[J]. 化学进展, 2011, 23(6): 1211-1223.
[13] 刘建云 黄乾明 王显祥 李珍 陈华萍. 量子点在电化学生物传感研究中的应用*[J]. 化学进展, 2010, 22(11): 2179-2190.
[14] 王炎,张永梅. 液相微萃取研究与应用[J]. 化学进展, 2009, 21(04): 696-704.
[15] 李瑞萍,张艺,黄应平. 环境样品中四环素类抗生素的检测技术*[J]. 化学进展, 2008, 20(12): 2075-2082.