English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 370-379 DOI: 10.7536/PC120842 前一篇   后一篇

• 综述与评论 •

单分子宽场光学显微成像技术

刘晓君, 涂洋, 盖宏伟*   

  1. 江苏师范大学化学化工学院 徐州 221116
  • 收稿日期:2012-08-01 修回日期:2012-10-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 盖宏伟 E-mail:gai@jsnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20705007,21075033)资助

Imaging of Single Molecules by Wide-Field Optical Microscopy

Liu Xiaojun, Tu Yang, Gai Hongwei*   

  1. School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • Received:2012-08-01 Revised:2012-10-01 Online:2013-02-24 Published:2012-12-28

单分子宽场光学显微成像技术是单分子检测技术的一种,具有通量高、参数多样、可实时动态监测等优点。本文评述了单分子宽场光学显微成像的技术方法、标记探针、判定原则、检测参数及其在分析化学、生物物理学等领域的应用,指出单分子成像技术正在向仪器设备的实用化、简易化,测量参数的精确化、可视化,研究范围的广泛化、复杂化等方面发展。未来几年单分子成像的研究重点可能会集中在实用定量、突破衍射极限的距离测量、重要生物过程的机理探索和纳米目标物的表征等方面。

Among the techniques used for single molecule detection, wide-field optical microscopy offers the advantages of high throughput, multiple parameters and dynamic real-time monitoring. In the review, the wide-field optical microscopy apparatus, methods, detectable parameters, imaging probes, identifications criterion of single molecules, and applications in the fields of analytical and biophysics are summarized. Single molecule imaging is trending toward apparatus commercialization, operation simplicity, and process visualization with more accuracy in a wider and more complicated field. In the near future, the topics of single molecule detection will focus on quantitative analysis of biological sample, sub-diffraction-limit resolution, important biological mechanism, and characterization of nano-materials. Contents
1 Introduction
2 Apparatus for wide-field imaging
2.1 Epi-fluorescence microscope
2.2 Total internal reflection fluorescence microscope
2.3 Dark-field microscopy
3 Probes
3.1 Fluorescent probes
3.2 Scattering probes
4 Identification of single molecules and measurable parameters
4.1 Principles to identify single molecule
4.2 Parameters
5 Applications
5.1 Single-molecule quantification
5.2 Molecular behavior related to separation
5.3 Molecular interactions
5.4 Single molecule tracking
5.5 Single-molecule far-field nanoscopy
6 Outlook

中图分类号: 

()

[1] Nie S M, Emery S R P. Science, 1997, 275: 1102-1106
[2] Nie S M, Chiu D T, Zare R N. Science, 1994, 266: 1018-1021
[3] Weiss S. Science, 1999, 283: 1676-1683
[4] Nie S M, Zare R N. Annu. Rev. Biophys. Biomol. Struct., 1997, 26: 567-596
[5] Xie X S, Trautman J K. Annu. Rev. Phys. Chem., 1998, 49: 441-480
[6] Schutz G J, Sonnleitner M, Hinterdorfer P, Schindler H. Mol. Membr. Biol., 2000, 17: 17-29
[7] Selvin P R, Ha T. Single-Molecule Techniques: A Laboratory Mannual. New York: Cold Spring Harbor Laboratory Press, 2008
[8] Gell C, Brockwell D, Smith A. Handbook of Single Molecule Fluorescence Spectroscopy. Oxford University Press, 2006
[9] Gai H W, Stayton I, Liu X, Lin B C, Ma Y F. Trac-Trends Anal. Chem., 2007, 26: 980-992
[10] Schwille P. Cell Biochem. Biophy., 2001, 34: 383-408
[11] Hinterdorfer P, Dufrene Y F. Nat. Methods, 2006, 3: 347-355
[12] Qian X M, Nie S M. Chem. Soc. Rev., 2008, 37: 912-920
[13] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307: 538-544
[14] Pons T, Mattoussi H. Ann. Biomed. Eng., 2009, 37: 1934-1959
[15] Xie X S, Choi P J, Li G W, Lee N K, Lia G. Annu. Rev. Biophy., 2008, 37: 417-444
[16] 白春礼(Bai C L). 来自微观世界的新概念: 单分子科学与技术 (A New Concept From the Microscopic World: Single Molecule Science and Technology). 清华大学出版社(Tsinghua University Press), 2000
[17] 盖宏伟(Gai H W), 白吉玲(Bai J L), 林炳承(Lin B C). 分析化学(Chinese Journal of Analytical Chemistry), 2002. 30: 869-874
[18] 唐孝威(Tang X W), 罗建红(Luo J H), 章士正(Zhang S Z), 王彦广(Wang Y G). 分子影像与单分子检测技术 (Molecular Imaging and Single-Molecule Detection). 化学工业出版社(Chemical Industry Press), 2004
[19] Gai H W, Griess G A, Demeler B, Weintraub S T, Serwer P. J. Microscopy-Oxford, 2007, 226: 256-262
[20] Gerhardt I, Mai L J, Lamas-Linares A, Kurtsiefer C. Sensors, 2011, 11: 905-916
[21] Seisenberger G, Ried M U, Endress T, Buning H, Hallek M, Brauchle C. Science, 2001, 294: 1929-1932
[22] Han R, Zhang Y W, Dong X L, Gai H W, Yeung E S. Anal. Chim. Acta, 2008, 619: 209-214
[23] Li Q, Han R, Meng X X, Gai H W, Yeung E S. Anal. Biochem., 2008, 377: 176-181
[24] Axelrod D. Traffic, 2001, 2: 764-774
[25] Sako Y, Minoghchi S, Yanagida T. Nat. Cell Biol., 2000, 2: 168-172
[26] Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T. Science, 2001, 294: 864-867
[27] Ichikawa T, Aoki T, Takeuchi Y, Yanagida T, Ide T. Langmuir, 2006, 22: 6302-6307
[28] Gai H W, Li Y, Silber-Li Z, Ma Y F, Lin, B C. Lab Chip, 2005, 5: 443-449
[29] Xiao L H, Wei L, He Y, Yeung E S. Anal. Chem., 2010, 82: 6308-6314
[30] Bu X B, Chen H P, Gai H W, Yang R H, Yeung E S. Anal. Chem., 2009, 81: 7507-7509
[31] Schutz G J, Kada G, Pastushenko V P, Schindler H. Embo J., 2000, 19: 892-901
[32] Kang S H, Yeung E S. Anal. Chem., 2002, 74: 6334-6339
[33] Ma Y F, Shortreed M R, Li H L, Huang W H, Yeung E S. Electrophoresis, 2001, 22: 421-426
[34] Douglass A D, Vale R D. Cell, 2005, 121: 937-950
[35] Harms G S, Cognet L, Lommerse P H M, Blab G A, Schmidt T. Biophys. Chem., 2001, 80: 2396-2408
[36] Goulian M, Simon S M. Biophys. Chem., 2000, 79: 2188-2198
[37] Grunwald D, Hoekstra A, Dange T, Buschmann V, Kubitscheck U. ChemPhysChem, 2006, 7: 812-815
[38] Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Science, 2003, 302: 442-445
[39] van Sark W, Frederix P, Bol A, Gerritsen H C, Meijerink A. ChemPhysChem, 2002, 3: 871-879
[40] Lee S F, Osborne M A. J. Am. Chem. Soc., 2007, 129: 8936-8937
[41] Hohng S, Ha T. J. Am. Chem. Soc., 2004, 126: 1324-1325
[42] Chen H P, Gai H W, Yeung E S. Chem. Commun., 2009, 1676-1678
[43] Shi X B, Meng X X, Sun L C, Liu J H, Zheng J, Gai H W, Yang R H, Yeung E S. Lab Chip, 2010, 10: 2844-2847
[44] Hu M, Novo C, Funston A, Wang H N, Staleva H, Zou S L, Mulvaney P, Xia Y N, Hartland G V. J. Mater. Chem., 2008, 18: 1949-1960
[45] Itoh T, Uwada T, Asahi T, Ozaki Y, Masuhara H. Can. J. Anal. Sci. Spectros., 2007, 52: 130-141
[46] Wang G F, Stender A S, Sun W, Fang N. Analyst, 2010, 135: 215-221
[47] Chen K H, Hobley J, Foo Y L, Su X D. Lab Chip, 2011, 11: 1895-1901
[48] Jin Y D, Gao X H. Nat. Nanotech., 2009, 4: 571-576
[49] Harms G S, Sonnleitner M, Schutz G J, Gruber H J, Schmidt T. Biophys. Chem., 1999, 77: 2864-2870
[50] Li N, Tang H, Gai H W, Dong X L, Wang Q, Yeung E S. Anal. Bioanal. Chem., 2009, 394: 1879-1885
[51] Li L, Tian X Z, Zou G Z, Shi Z K, Zhang X L, Jin W R. Anal. Chem., 2008, 80: 3999-4006
[52] Peterson E M, Harris J M. Anal. Chem., 2010, 82: 189-196
[53] Lee J Y, Li J W, Yeung E S. Anal. Chem., 2007, 79: 8083-8089
[54] Xue Q W, Jiang D F, Wang L, Jiang W. Bioconjugate Chem., 2010, 21: 1987-1993
[55] Jiang D F, Wang L, Jiang W. Anal. Chim. Acta, 2009, 634: 83-88
[56] Tessler L A, Reifenberger J G, Mitra R D. Anal. Chem., 2009, 81: 7141-7148
[57] Hesse J, Jacak J, Kasper M, Regl G, Eichberger T, Winklmayr M, Aberger F, Sonnleitner M, Schlapak R, Howorka S, Muresan L, Frischauf A M, Schutz G J. Genome Res., 2006, 16: 1041-1045
[58] Li L, Li X C, Li L, Wang J X, Jin W R. Anal. Chim. Acta, 2011, 685: 52-57
[59] Gai H W, Wang Q, Ma Y F, Lin B C. Angew. Chem. Int. Ed., 2005, 44: 5107-5110
[60] Xu X H N, Yeung E S. Science, 1998, 281: 1650-1653
[61] Fang N, Zhang H, Li J W, Li H W, Yeung E S. Anal. Chem., 2007, 79: 6047-6054
[62] Ma C B, Yeung E S. Anal. Chem., 2010, 82: 478-482
[63] Ma C B, Yeung E S. Anal. Chem., 2010, 82: 654-657
[64] Shortreed M R, Li H L, Huang W H, Yeung E S. Anal. Chem., 2000, 72: 2879-2885
[65] Zheng J J, Yeung E S. Anal. Chem., 2002, 74: 4536-4547
[66] Kang S H, Lee S, Yeung E S. Electrophoresis, 2006, 27: 4149-4157
[67] Hillisch A, Lorenz M, Diekmann S. Curr. Opin. Struc. Biol., 2011, 11: 201-207
[68] Svishchev G M. Opt. Spectros., 2004, 97: 204-209
[69] Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T. Cell, 1998, 92: 161-171
[70] Hibino K, Shibata T, Yanagida T, Sako Y. Biophys. Chem., 2009, 97: 1277-1287
[71] Kaseda K, Yokota H, Ishii Y, Yanagida T, Inoue T, Fukui K, Kodama T. J. Bacteriol., 2000, 182: 1162-1166
[72] Herbert K M, Greenleaf W J, Block S M. Annu. Rev. Biochem., 2008, 77: 149-176
[73] Kitamura K, Tokunaga M, Iwane A H, Yanagida T. Nature, 1999, 397: 129-134
[75] Liu S X, Abbondanzieri E A, Rausch J W, Le Grice S F J, Zhuang X W. Science, 2008, 322: 1092-1097
[75] Lakadamyali M, Rust M J, Babcock H P, Zhuang X W. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 9280-9285
[76] Iino R, Koyama I, Kusumi A. Biophys. Chem., 2001, 80: 2667-2677
[77] Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. Nat. Biotechnol., 2004, 22: 969-976
[78] Yu Q, Wang C, Liu L, Wang G Y. Chin. Optics Lett., 2005, 3: 256-258
[79] Kubitscheck U, Kuckmann O, Kues T, Peters R. Biophys. Chem., 2000, 78: 2170-2179
[80] Debrabander M, Nuydens R, Geerts H, Hopkins C R. Cell Motil. Cytoskel., 1988, 9: 30-47
[81] Kusumi A, Sako Y. Curr. Opin. Cell Biol., 1996, 8: 566-574
[82] Saxton M J, Jacobson K. Annu. Rev. Biophys. Biomol. Struct., 1997, 26: 373-399
[83] Ritchie K, Shan X Y, Kondo J, Iwasawa K, Fujiwara T, Kusumi A. Biophys. Chem., 2005, 88: 2266-2277
[84] Kues T, Peters R, Kubitscheck U. Biophys. Chem., 2001, 80: 2954-2967
[85] Siebrasse J P, Grunwald D, Kubitscheck U. Anal. Bioanal. Chem., 2007, 387: 41-44
[86] Courty S, Luccardini C, Bellaiche Y, Cappello G, Dahan M. Nano Lett., 2006, 6: 1491-1495
[87] Tada H, Higuchi H, Wanatabe T M, Ohuchi N. Cancer Res., 2007, 67: 1138-1144
[88] Hell S W. Science, 2007, 316: 1153-1158
[89] Hell S, Stelzer E H K. Opt. Commun., 1992, 93: 277-282
[90] Hofmann M, Eggeling C, Jakobs S, Hell S W. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 17565-17569
[91] Xiong Y, Liu Z, Sun C, Zhang X. Nano Lett., 2007, 7: 3360-3365
[92] Willig K I, Harke B, Medda R, Hell S W. Nat. Methods, 2007, 4: 915-918
[93] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F. Science, 2006, 313: 1642-1645
[94] Rust M J, Bates M, Zhuang X W. Nat. Methods, 2006, 3: 793-795
[95] Bates M, Huang B, Dempsey G T, Zhuang X W. Science, 2007, 317: 1749-1753
[96] Thompson R E, Larson D R, Webb W W. Biophys. Chem., 2002, 82: 2775-2783
[97] Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R. Science, 2003, 300: 2061-2065
[98] Gordon M P, Ha T, Selvin P R. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 6462-6465
[99] Agrawal A, Deo R, Wang G D, Wang M D, Nie S M. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 3298-3303
[100] Lacoste T D, Michalet X, Pinaud F, Chemla D S, Alivisatos A P, Weiss S. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 9461-9466
[101] Toprak E, Balci H, Blehm B H, Selvin P R. Nano Lett., 2007, 7: 2043-2045
[102] Holtzer L, Meckel T, Schmidt T. Appl. Phys. Lett., 2007, 90: art. no. 053902
[103] Huang B, Wang W Q, Bates M, Zhuang X W. Science, 2008, 319: 810-813
[104] Shi X B, Xie Z Q, Song Y H, Tan Y J, Yeung E S, Gai H W. Anal. Chem., 2012, 84: 1504-1509

[1] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[2] 吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
[3] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[4] 徐彦乔, 陈婷, 王连军, 江伟辉, 江莞, 谢志翔. Ⅰ-Ⅲ-Ⅵ 族量子点的制备及其在照明显示领域的应用[J]. 化学进展, 2019, 31(9): 1238-1250.
[5] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[6] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[7] 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 碳量子点激发依赖荧光特性的机理、调控及应用[J]. 化学进展, 2018, 30(8): 1186-1201.
[8] 刘禹杉, 李伟, 吴鹏, 刘守新*. 水热炭化制备碳量子点及其应用[J]. 化学进展, 2018, 30(4): 349-364.
[9] 翟彩华, 陈志良, 吕沙沙, 林毅*, 张志淩, 庞代文. 金属增强量子点荧光[J]. 化学进展, 2017, 29(8): 814-823.
[10] 刘康, 高冠斌*, 孙涛垒*. β-HgS量子点的制备、性质及应用[J]. 化学进展, 2017, 29(7): 776-784.
[11] 卫林峰, 马建中, 张文博, 鲍艳. 氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用[J]. 化学进展, 2017, 29(6): 637-648.
[12] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[13] 胡先运, 郭庆生, 刘玉乾, 孙清江, 孟铁宏, 张汝国. 量子点荧光传感器的设计及应用[J]. 化学进展, 2017, 29(2/3): 300-317.
[14] 袁婷联, 蒋莹琰, 王伟. 光热显微术:基于光吸收的单分子成像技术[J]. 化学进展, 2016, 28(5): 607-616.
[15] 刘超, 谭瑞琴, 曾俞衡, 王维燕, 黄金华, 宋伟杰. 硅纳米晶的制备及其在太阳电池中的应用研究[J]. 化学进展, 2015, 27(9): 1302-1312.
阅读次数
全文


摘要

单分子宽场光学显微成像技术