English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 409-418 DOI: 10.7536/PC120836 前一篇   后一篇

• 综述与评论 •

量子点敏化太阳电池

刘锋, 朱俊*, 魏俊峰, 李毅, 胡林华, 戴松元*   

  1. 中国科学院新型薄膜太阳电池重点实验室 中国科学院等离子体物理研究所 合肥 230031
  • 收稿日期:2012-08-01 修回日期:2012-10-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 朱俊, 戴松元 E-mail:zhujzhu@gmail.com;sydai@ipp.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2011CBA00700)、国家高技术发展计划(863)项目(No.2011AA050527)和国家自然科学基金项目(No.21003130, 21173228)资助

Quantum Dot-Sensitized Solar Cells

Liu Feng, Zhu Jun*, Wei Junfeng, Li Yi, Hu Linhua, Dai Songyuan*   

  1. Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2012-08-01 Revised:2012-10-01 Online:2013-02-24 Published:2012-12-28

基于量子限域效应的新型太阳电池——量子点敏化太阳电池(QD-SSCs),由于其最大理论转化效率超过了传统的Shockley-Queisser极限效率,已经成为目前最具研究潜力的太阳电池之一。本文综述了近几年来QD-SSCs领域的研究进展,主要从半导体氧化物纳米材料,特别是其低维纳米结构下的特殊性能;金属硫族化合物纳米晶;电解质;对电极等几个方面评述了电池材料的研究进展。另外,从量子点材料的制备和组装方面简述了目前电池光阳极的研究情况,并介绍了提高量子点光敏化性能的几个新途径。最后,从开路电压和短路电流角度分析了影响电池性能的几个关键因素,并对QD-SSCs今后的发展进行了展望。

Quantum dot-sensitized solar cells (QD-SSCs) based on quantum confinement effect have the potential to increase the maximum attainable theoretical conversion efficiency of solar photon up to 44% and have been recongnized as the most potential solar cells. However, this kind of solar cells have shown relatively lower efficiencies than initially expected because of many difficulties in finding appropriate sensitizer materials, hole transport materials (HTM) and electrocatalytic materials. This paper mainly gives an overview of the recent developments in QD-SSCs, including the advanced materials and structure designs of wide-bandgap oxide semiconductors, quantum dot materials, electrolyte system and counter electrodes. In addition, recent experimental methods for growing quantum dots on the surface of wide-bandgap oxide semiconductor are briefly reviewed, such as CBD and SILAR method. Furthermore, the current problems existed in solving stability issues are discussed and many methods for further improving cell stability and performance are also overviewed, including the principle and technology of co-sensitization.Meanwhile, the concept of surface passivation is also discussed. Finally, We also analyse the key factors that influence to a great extent the conversion efficiency. Since to further increase the power conversion efficiency still remains a major challenge and a tough task, we propose some suggestions towards the future developments of QD-SSCs. Contents
1 Introduction
2 Structure and principle of the quantum dot-sensitized solar cells (QD-SSCs)
3 Materials of QD-SSCs
[JP3]3.1 Wide-bandgap oxide semiconductor nano-materials[JP]
3.2 Quantum dot sensitizer materials
3.3 Electrolytes
3.4 Counter electrodes
4 Preparation and assembly methods of quantum dots
4.1 Pre-synthesization method
4.2 In-situ method
5 Increasing the efficiency of QD-SSCs
6 Outlook

中图分类号: 

()

[1] Serpone N, Borgarello E, Grätzel M. Journal of the Chemical Society-Chemical Communications, 1984, (6): 342-344
[2] Kramer I J, Sargent E H. ACS Nano, 2011, 5 (11): 8506-8514
[3] Hodes G. J. Phys. Chem. C, 2008, 112 (46): 17778-17787
[4] Kamat P V, Tvrdy K, Baker D R, Radich J G. Chem. Rev., 2010, 110 (11): 6664-6688
[5] Mora-Sero I, Bisquert J. The Journal of Physical Chemistry Letters, 2010, 1 (20): 3046-3052
[6] Murray C B, Noms D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115 (19): 8706-8715
[7] Yu W W, Qu L H, Guo W Z, Peng X G. Chem. Mater., 2003, 15 (14): 2854-2860
[8] Kamat P V. J. Phys. Chem. C, 2008, 112 (48): 18737-18753
[9] Semonin O E, Luther J M, Choi S, Chen H Y, Gao J B, Nozik A J, Beard M C. Science, 2011, 334 (6062): 1530-1533
[10] Tisdale W A, Williams K J, Timp B A, Norris D J, Aydil E S, Zhu X Y. Science, 2010, 328 (5985): 1543-1547
[11] Xu J, Yang X, Wang H, Chen X, Luan C, Xu Z, Lu Z, Roy V A, Zhang W, Lee C S. Nano Lett., 2011, 11 (10): 4138-4143
[12] Fang B, Kim M, Fan S Q, Kim J H, Wilkinson D P, Ko J, Yu J S. J. Mater. Chem., 2011, 21 (24): 8742-8748
[13] Yang Z S, Chen C Y, Liu C W, Li C L, Chang H T. Adv. Energy Mater., 2011, 1 (2): 259-264
[14] Yang Z S, Chen C Y, Liu C W, Chang H T. Chem. Commun., 2010, 46 (30): 5485-5487
[15] Oregan B, Grätzel M. Nature, 1991, 353 (6346): 737-740
[16] Kopidakis N, Schiff E A, Park N G, van de Lagemaat J, Frank A J. J. Phys. Chem. B, 2000, 104 (16): 3930-3936
[17] Hendry E, Koeberg M, O'Regan B, Bonn M. Nano Lett., 2006, 6 (4): 755-759
[18] Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M. J. Am. Chem. Soc., 2008, 130 (4): 1124-1125
[19] Baker D R, Kamat P V. Adv. Funct. Mater., 2009, 19 (5): 805-811
[20] Bang J H, Kamat P V. Adv. Funct. Mater., 2010, 20 (12): 1970-1976
[21] Wang H, Bai Y, Zhang H, Zhang Z, Li J, Guo L. J. Am. Chem. Soc., 2010, 114 (39): 16451-16455
[22] Kumar A, Li K T, Madaria A R, Zhou C W. Nano Research, 2011, 4 (12): 1181-1190
[23] Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nat. Mater., 2005, 4 (6): 455-459
[24] Seol M, Kim H, Kim W, Yong K. Electrochem. Commun., 2010, 12 (10): 1416-1418
[25] Seol M, Kim H, Tak Y, Yong K. Chem. Commun., 2010, 46 (30): 5521-5523
[26] Thambidurai M, Muthukumarasamy N, Arul N S, Agilan S, Balasundaraprabhu R. J. Nanopart. Res., 2011, 13 (8): 3267-3273
[27] Zhou J, Song B, Zhao G L, Dong W X, Han G R. Appl. Phys. A -Mater., 2012, 107 (2): 321-331
[28] Li X B, Dou W, Bao N Z. Mater. Lett., 2012, 68: 140-142
[29] Qi X P, She G W, Liu Y Y, Mu L X, Shi W S. Chem. Commun., 2012, 48 (2): 242-244
[30] Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S. Nano Lett., 2007, 7 (6): 1793-1798
[31] Sudhagar P, Song T, Lee D H, Mora-Sero I, Bisquert J, Laudenslager M, Sigmund W M, Park W I, Paik U, Kang Y S. The Journal of Physical Chemistry Letters, 2011, 2 (16): 1984-1990
[32] Xu J, Yang X, Wang H K, Chen X, Luan C Y, Xu Z X, Lu Z Z, Roy V A L, Zhang W J, Lee C S. Nano Lett., 2012, 12 (4): 2177-2177
[33] Keis K, Lindgren J, Lindquist S E, Hagfeldt A. Langmuir, 2000, 16 (10): 4688-4694
[34] Vogel R, Hoyer P, Weller H. J. Phys. Chem. C, 1994, 98 (12): 3183-3188
[35] Spanhel L, Haase M, Weller H, Henglein A. J. Am. Chem. Soc., 1987, 109 (19): 5649-5655
[36] Yuan Y, Riehle F S, Nitschke R, Kruger M. Mater. Sci. Eng. B -Adv., 2012, 177 (2): 245-250
[37] Ernst K, Engelhardt R, Ellmer K, Kelch C, Muffler H J, Lux-Steiner M C, Konenkamp R. Thin Solid Films, 2001, 387 (1/2): 26-28
[38] Yuan Z M, Ma Q, Zhang A Y, Cao Y Q, Yang J, Yang P. Journal of Materials Science, 2012, 47 (8): 3770-3776
[39] Vigneashwari B, Ravichandran V, Parameswaran P, Dash S, Tyagi A K. J. Nanosci. Nanotechnol., 2008, 8 (2): 689-694
[40] Yu P R, Zhu K, Norman A G, Ferrere S, Frank A J, Nozik A J. J. Phys. Chem. B, 2006, 110 (50): 25451-25454
[41] Narayanan R, Reddy B N, Deepa M. J. Phys. Chem. C, 2012, 116 (12): 7189-7199
[42] Ma B B, Wang L D, Dong H P, Gao R, Geng Y, Zhu Y F, Qiu Y. PCCP, 2011, 13 (7): 2656-2658
[43] Vogel R, Pohl K, Weller H. Chem. Phys. Lett., 1990, 174 (3/4): 241-246
[44] Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M. Appl. Phys. Lett., 2007, 90 (14): art. no. 143517
[45] Chang C H, Lee Y L. Appl. Phys. Lett., 2007, 91 (5): art. no. 053503
[46] Chong L W, Chien H T, Lee Y L. J. Power Sources, 2010, 195 (15): 5109-5113
[47] Nair P K, Nair M T S, Garcia V M, Arenas O L, Pena Y, Castillo A, Ayala I T, Gomezdaza O, Sanchez A, Campos J, Hu H, Suarez R, Rincon M E. Sol. Energy Mater. Sol. Cells, 1998, 52 (3/4): 313-344
[48] Messina S, Nair M T S, Nair P K. Thin Solid Films, 2007, 515 (15): 5777-5782
[49] Im S H, Kim H J, Rhee J H, Lim C S, Sang S I. Energy Environ. Sci., 2011, 4 (8): 2799-2802
[50] Nezu S, Larramona G, Chone C, Jacob A, Delatouche B, Pere D, Moisan C. J. Phys. Chem. C, 2010, 114 (14): 6854-6859
[51] Itzhaik Y, Niitsoo O, Page M, Hodes G. J. Phys. Chem. C, 2009, 113 (11): 4254-4256
[52] Chang J A, Im S H, Lee Y H, Kim H J, Lim C S, Heo J H, Seok S I. Nano Lett., 2012, 12 (4): 1863-1867
[53] Braga A, Gimenez S, Concina I, Vomiero A, Mora-Sero I. J. Phys. Chem. Lett., 2011, 2 (5): 454-460
[54] Schaller R D, Klimov V I. Phys. Rev. Lett., 2004, 92 (18): art. no. 186601
[55] Choi J J, Lim Y F, Santiago-Berrios M B, Oh M, Hyun B R, Sung L F, Bartnik A C, Goedhart A, Malliaras G G, Abruna H D, Wise F W, Hanrath T. Nano Lett., 2009, 9 (11): 3749-3755
[56] Micic O I, Sprague J, Lu Z H, Nozik A J. Appl. Phys. Lett., 1996, 68 (22): 3150-3152
[57] Zaban A, Micic O I, Gregg B A, Nozik A J. Langmuir, 1998, 14 (12): 3153-3156
[58] Chen H M, Chen C K, Lin C C, Liu R S, Yang H, Chang W S, Chen K H, Chan T S, Lee J F, Tsai D P. J. Phys. Chem. C, 2011, 115 (44): 21971-21980
[59] Im J H, Lee C R, Lee J W, Park S W, Park N G. Nanoscale, 2011, 3 (10): 4088-4093
[60] Zhang Q X, Guo X Z, Huang X M, Huang S Q, Li D M, Luo Y H, Shen Q, Toyoda T, Meng Q B. PCCP, 2011, 13 (10): 4659-4667
[61] Yu X Y, Lei B X, Kuang D B, Su C Y. Chem. Sci., 2011, 2 (7): 1396-1400
[62] Tubtimtae A, Lee M W, Wang G J. J. Power Sources, 2011, 196 (15): 6603-6608
[63] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep. -UK, 2012, 2: 1-7
[64] Li T L, Lee Y L, Teng H. Energy Environ. Sci., 2012, 5 (1): 5315-5324
[65] Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R. Chem. Commun., 2002, (14): 1464-1465
[66] Velten J, Mozer A J, Li D, Officer D, Wallace G, Baughman R, Zakhidov A. Nanotechnology, 2012, 23 (8): art. no. 085201
[67] Wei D. Int. J. Mol. Sci., 2010, 11 (3): 1103-1113
[68] Tachibana Y, Akiyama H Y, Ohtsuka Y, Torimoto T, Kuwabata S. Chem. Lett., 2007, 36 (1): 88-89
[69] Lee Y L, Chang C H. J. Power Sources, 2008, 185 (1): 584-588
[70] Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y. ACS Nano, 2011, 5 (12): 9494-9500
[71] Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Il Seok S, Grätzel M, Nazeeruddin M K. Langmuir, 2009, 25 (13): 7602-7608
[72] Lee H, Wang M K, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M, Nazeeruddin M K. Nano Lett., 2009, 9 (12): 4221-4227
[73] Lee H, Leventis H C, Moon S J, Chen P, Ito S, Haque S A, Torres T, Nuesch F, Geiger T, Zakeeruddin S M, Gratzel M, Nazeeruddin M K. Adv. Funct. Mater., 2009, 19 (17): 2735-2742
[74] Moon S J, Itzhaik Y, Yum J H, Zakeeruddin S M, Hodes G, Grätzel M. The Journal of Physical Chemistry Letters, 2010, 1 (10): 1524-1527
[75] Ardalan P, Brennan T P, Lee H B R, Bakke J R, Ding I K, McGehee M D, Bent S F. ACS Nano, 2011, 5 (2): 1495-1504
[76] Larramona G, Chone C, Jacob A, Sakakura D, Delatouche B, Pere D, Cieren X, Nagino M, Bayon R. Chem. Mater., 2006, 18 (6): 1688-1696
[77] Belaidi A, Dittrich T, Kieven D, Tornow J, Schwarzburg K, Lux-Steiner M. Physica Status Solidi-Rapid Research Letters, 2008, 2 (4): 172-174
[78] Hodes G, Manassen J, Cahen D. J. Appl. Electrochem., 1977, 7 (2): 181-182
[79] Hodes G, Manassen J, Cahen D. J. Electrochem. Soc., 1980, 127 (3): 544-549
[80] Tachan Z, Shalom M, Hod I, Ruhle S, Tirosh S, Zaban A. J. Phys. Chem. C, 2011, 115 (13): 6162-6166
[81] Radich J G, Dwyer R, Kamat P V. The Journal of Physical Chemistry Letters, 2011, 2 (19): 2453-2460
[82] Fuke N, Hoch L B, Koposov A Y, Manner V W, Werder D J, Fukui A, Koide N, Katayama H, Sykora M. ACS Nano, 2010, 4 (11): 6377-6386
[83] Murray C B, Sun S, Gaschler W, Doyle H, Betley T A, Kagan C R. IBM J. RES. & DEV., 2001, 45 (1): 47-56
[84] Moreels I, Lambert K, De Muynck D, Vanhaecke F, Poelman D, Martins J C, Allan G, Hens Z. Chem. Mater., 2007, 19 (25): 6101-6106
[85] King L A, Riley D J. J. Phys. Chem. C, 2012, 116 (5): 3349-3355
[86] Pan Z X, Zhang H, Cheng K, Hou Y M, Hua J L, Zhong X H. ACS Nano, 2012, 6 (5): 3982-3991
[87] Chakrapani V, Baker D, Kamat P V. J. Am. Chem. Soc., 2011, 133 (24): 9607-9615
[88] Hodes G. PCCP, 2007, 9 (18): 2181-2196
[89] Hodes G, Albuyaron A, Decker F, Motisuke P. Phys. Rev. B, 1987, 36 (8): 4215-4221
[90] Tec-Yam S, Patio R, Oliva A I. Curr. Appl. Phys., 2011, 11 (3): 914-920
[91] Jaber A Y, Alamri S N, Aida M S. Thin Solid Films, 2012, 520 (9): 3485-3489
[92] Kokotov M, Feldman Y, Avishai A, DeGuire M, Hodes G. Thin Solid Films, 2011, 519 (19): 6388-6393
[93] Zhu G, Pan L, Xu T, Sun Z. ACS Appl. Mater. Interfaces, 2011, 3 (5): 1472-1478
[94] Jin-nouchi Y, Naya S I, Tada H. J. Phys. Chem. C, 2010, 114 (39): 16837-16842
[95] Zhang Y H, Zhu J, Yu X C, Wei J F, Hu L H, Dai S Y. Sol. Energy, 2012, 86 (3): 964-971
[96] Akaltun Y, Yildirim M A, Ates A, Yildirim M. Optics Communications, 2011, 284 (9): 2307-2311
[97] Tsukigase H, Suzuki Y, Berger M H, Sagawa T, Yoshikawa S. J. Nanosci. Nanotechnol., 2011, 11 (3): 1914-1922
[98] Kundakci M, Ates A, Astam A, Yidirim M. Physica E-Low-Dimensional Systems & Nanostructures, 2008, 40 (3): 600-605
[99] Kang Q, Liu S H, Yang L X, Cai Q Y, Grimes C A. ACS Appl. Mater. Interfaces, 2011, 3 (3): 746-749
[100] Fang J H, Wu J W, Lu X M, Shen Y C, Lu Z H. Chem. Phys. Lett., 1997, 270 (1/2): 145-151
[101] Li B, Wang L D, Li J W, Qiu Y. Chin. Phys. Lett., 2004, 21 (7): 1391-1393
[102] Shalom M, Albero J, Tachan Z, Martinez-Ferrero E, Zaban A, Palomares E. The Journal of Physical Chemistry Letters, 2010, 1 (7): 1134-1138
[103] Choi H, Nicolaescu R, Paek S, Ko J, Kamat P V. ACS Nano, 2011, 5 (11): 9238-9245
[104] Liu Y Q, Wang J. Thin Solid Films, 2010, 518 (24): E54-E56
[105] Song X, Yu X L, Xie Y, Sun J, Ling T, Du X W. Semicond. Sci. Technol., 2010, 25 (9): art. no. 095014
[106] Shen Y C, Deng H H, Fang J H, Lu Z H. Colloids and Surfaces A -Physicochemical and Engineering Aspects, 2000, 175 (1/2): 135-140
[107] Yuh-Lang L, Yi-Siou L. Adv. Funct. Mater., 2009, 19 (4): 604-609
[108] Yang Z S, Chang H T. Sol. Energy Mater. Sol. Cells, 2010, 94 (12): 2046-2051
[109] Liu C C, Liu Z F, Li Y B, Ya J, Lei E, An L. Appl. Surf. Sci., 2011, 257 (16): 7041-7046
[110] Yang Z S, Chen C Y, Roy P, Chang H T. Chem. Commun., 2011, 47 (34): 9561-9571
[111] Santra P K, Kamat P V. J. Am. Chem. Soc., 2012, 134 (5): 2508-2511
[112] Itzhaik Y, Niitsoo O, Page M, Hodes G. J. Phys. Chem. C, 2009, 113 (11): 4254-4256
[113] Gonzalez-Pedro V, Xu X Q, Mora-Sero I, Bisquert J. ACS Nano, 2010, 4 (10): 5783-5790
[114] Hagfeldt A, Grätzel M. Acc. Chem. Res., 2000, 33 (5): 269-277
[115] Barea E M, Shalom M, Gimenez S, Hod I, Mora-Sero I, Zaban A, Bisquert J. J. Am. Chem. Soc., 2010, 132 (19): 6834-6839
[116] Mora-Sero I, Gimenez S, Fabregat-Santiago F, Gomez R, Shen Q, Toyoda T, Bisquert J. Acc. Chem. Res., 2009, 42 (11): 1848-1857
[117] Yokota H, Okazaki K, Shimura K, Nakayama M, Kim D. J. Phys. Chem. C, 2012, 116 (9): 5456-5459
[118] Shalom M, Dor S, Ruhle S, Grinis L, Zaban A. J. Phys. Chem. C, 2009, 113 (9): 3895-3898
[119] Shalom M, Albero J, Tachan Z, Martinez-Ferrero E, Zaban A, Palomares E. J. Phys. Chem. Lett., 2010, 1 (7): 1134-1138
[120] Jin S Y, Martinson A B F, Wiederrecht G P. J. Phys. Chem. C, 2012, 116 (4): 3097-3104
[121] Choi H, Kim S, Kang S O, Ko J J, Kang M S, Clifford J N, Forneli A, Palomares E, Nazeeruddin M K, Grätzel M. Angewandte Chemie-International Edition, 2008, 47 (43): 8259-8263
[122] Snaith H J. Adv. Funct. Mater., 2010, 20 (1): 13-19

[1] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[2] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[3] 李晓茵, 周传聪, 王英华, 丁菲菲, 周华伟, 张宪玺. 锡基钙钛矿太阳电池光吸收材料[J]. 化学进展, 2019, 31(6): 882-893.
[4] 单雪燕, 王时茂, 孟钢, 方晓东. 钙钛矿太阳电池电子传输层与光吸收层的界面工程[J]. 化学进展, 2019, 31(5): 714-722.
[5] 王露, 霍志鹏, 易锦馨, Ahmed Alsaedi, Tasawar Hayat, 戴松元. 有机-无机杂化钙钛矿太阳电池中的钙钛矿层功能添加剂[J]. 化学进展, 2017, 29(8): 870-878.
[6] 李炎平, 於黄忠, 董一帆, 黄欣欣. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016, 28(8): 1170-1185.
[7] 姜玲, 阙亚萍, 丁勇, 胡林华, 张昌能, 戴松元. 上/下转换材料在染料敏化太阳电池中的应用进展[J]. 化学进展, 2016, 28(5): 637-646.
[8] 阙亚萍, 翁坚, 胡林华, 戴松元. 二氧化钛在钙钛矿太阳电池中的应用[J]. 化学进展, 2016, 28(1): 40-50.
[9] 刘超, 谭瑞琴, 曾俞衡, 王维燕, 黄金华, 宋伟杰. 硅纳米晶的制备及其在太阳电池中的应用研究[J]. 化学进展, 2015, 27(9): 1302-1312.
[10] 赵响, 赵宗彦. 四元化合物半导体Cu2ZnSnS4:结构、制备、应用及前景[J]. 化学进展, 2015, 27(7): 913-934.
[11] 孙花飞, 泮廷廷, 胡桂祺, 孙元伟, 王东亭, 张宪玺. 染料敏化太阳电池钌系敏化剂[J]. 化学进展, 2014, 26(04): 609-625.
[12] 桃李, 霍志鹏*, 潘旭, 张昌能, 戴松元*. 有机小分子胶凝剂在准固态染料敏化太阳电池中的应用[J]. 化学进展, 2013, 25(06): 990-998.
[13] 刘伟庆, 寇东星, 蔡墨朗, 胡林华, 戴松元. 染料敏化太阳电池阻抗特性研究[J]. 化学进展, 2012, 24(05): 722-736.
[14] 武国华, 孔凡太, 翁坚, 戴松元, 奚小网, 张昌能. 有机染料及其在染料敏化太阳电池中的应用[J]. 化学进展, 2011, 23(9): 1929-1935.
[15] 高玉荣, 马廷丽. 体异质结型聚合物太阳电池[J]. 化学进展, 2011, 23(5): 991-1013.
阅读次数
全文


摘要

量子点敏化太阳电池