English
新闻公告
More
化学进展 DOI: 10.7536/PC120810 前一篇   后一篇

• Mini Accounts •

金属、金属氧化物纳米晶催化剂: 结构与催化性能关系研究

王定胜, 李亚栋   

  1. 清华大学化学系 北京 100084
  • 出版日期:2013-01-24 发布日期:2012-12-27

Metal and Metal Oxide Nanocatalysts: Investigating the Influence of Structural Characteristics on their Catalytic Performance

Wang Dingsheng  Li Yadong   

  1. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Online:2013-01-24 Published:2012-12-27

金属与金属氧化物纳米晶作为常见催化材料(催化剂、助催化剂或载体),在过去的几十年中引起了人们极大的关注。近年来, 纳米催化领域, 尤其是纳米晶催化剂的可控制备技术, 虽然取得了许多重要的进展, 然而, 真正理解纳米晶催化剂三性(活性、选择性和稳定性)与其微观结构上的内在联系一直以来都是具有挑战性的科学难题。怎样理解催化反应过程中纳米晶催化剂的活性位点?什么是影响其催化性能的关键因素。如何理解纳米催化的物理化学本质, 认识其规律性, 提高纳米晶催化剂活性、选择性和稳定性均是纳米催化领域有待解决的重要科学问题。我们课题组针对这些问题和挑战开展了纳米催化研究工作。本文总结了近年来课题组所取得的研究成果。

In the past few decades, metal and metal oxide nanocrystals, as the most common catalytic materials, have attracted broad attention from worldwide scientists. Although considerable progress has been made in nanocatalysis, especially in controllable synthesis of nanocrystalline catalysts, it still remains a great challenge to fully understand the relationship between the catalytic properties (activity, selectivity, and durability) of nanocrystals with their structural characteristics in varied types of reactions. Actually, recognizing the regularity of nanocatalysis and revealing its physical and chemical nature are significant basic issues in catalytic science and technology. According to these basic scientific issues, our group has carried out systematic research work. This mini account highlights the recent progress in this area in our group.

中图分类号: 

()

[1] Brus L E. J. Chem. Phys., 1983, 79: 5566-5571

[2] Haruta M, Yamada N, Kobayashi T, Iijima S. J. Catal., 1989, 115: 301-309

[3] Valden M, Lai X, Goodman D W. Science, 1998, 281: 1647-1650

[4] Chen M S, Goodman D W. Acc. Chem. Res., 2006, 39: 739-746

[5] Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115: 8706-8715

[6] Cushing B L, Kolesnichenko V L, O′Connor C J. Chem. Rev., 2004, 104: 3893-3946

[7] Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437: 121-124

[8] Wang D S, Xie T, Li Y D. Nano Res., 2009, 2: 30-46

[9] Zhang W P, Xu S T, Han X W, Bao X H. Chem. Soc. Rev., 2012, 41: 192-210

[10] Wu D Y, Liu X M, Huang Y F, Ren B, Xu X, Tian Z Q. J. Phys. Chem. C, 2009, 113: 18212-18222

[11] Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. J. Catal., 2005, 229: 206-212

[12] Bratlie K M, Lee H, Komvopoulos K, Yang P D, Somorjai G A. Nano Lett., 2007, 7: 3097-3101

[13] Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. J. Am. Chem. Soc., 2012, 134: 10251-10258

[14] Zhu K, Wang D, Liu J. Nano Res., 2009, 2: 1-29

[15] Zhou K B, Wang R P, Xu B Q, Li Y D. Nanotechnology, 2006, 17: 3939-3943

[16] Xu R, Wang X, Wang D S, Zhou K B, Li Y D. J. Catal., 2006, 237: 426-430

[17] Hu L H, Peng Q, Li Y D. J. Am. Chem. Soc., 2008, 130: 16136-16137

[18] Hu L H, Sun K Q, Peng Q, Xu B Q, Li Y D. Nano Res., 2010, 3: 363-368

[19] Liu X W, Zhou K B, Wang L, Wang B Y, Li Y D. J. Am. Chem. Soc., 2009, 131: 3140-3141

[20] Ma Z, Dai S. Nano Res., 2011, 4: 3-32

[21] Liu J F, Chen W, Liu X W, Zhou K B, Li Y D. Nano Res., 2008, 1: 46-55

[22] Hu L H, Peng Q, Li Y D. ChemCatChem, 2011, 3: 868-874

[23] Bai F, Wang D S, Huo Z Y, Chen W, Liu L P, Liang X, Chen C, Wang X, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2007, 46: 6650-6653

[24] Wang D S, Xie T, Peng Q, Li Y D. J. Am. Chem. Soc., 2008, 130: 4016-4022

[25] Chen C, Nan C Y, Wang D S, Su Q, Duan H H, Liu X W, Zhang L S, Chu D R, Song W G, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2011, 50: 3725-3729

[26] Li P, Wei Z, Wu T, Peng Q, Li Y D. J. Am. Chem. Soc., 2011, 133: 5660-5663

[27] Lin F, Chen W, Liao Y, Doong R, Li Y D. Nano Res. 2011, 4: 1223-1232

[28] Wang D S, Li Y D. Inorg. Chem., 2011, 50: 5196-5202

[29] Park J C, Song H. Nano Res., 2011, 4: 33-49

[30] Roucoux A, Schulz J, Patin H. Chem. Rev., 2002, 102: 3757-3778

[31] Xia Y N, Xiong Y J, Lim B, Skrabalak S E. Angew. Chem. Int. Ed., 2009, 48: 60-103

[32] Chen M, Wu B H, Yang J, Zheng N F. Adv. Mater., 2012, 24: 862-879

[33] Sau T K, Rogach A L. Adv. Mater., 2010, 22: 1781-1804

[34] Niu Z Q, Peng Q, Gong M, Rong H P, Li Y D. Angew. Chem. Int. Ed., 2011, 50: 6315-6319

[35] Niu Z Q, Peng Q, Zhuang Z B, He W, Li Y D. Chem. Eur. J., 2012, 18: 9813-9817

[36] Lim B, Jiang M J, Camargo P H C, Cho E C, Tao J, Lu X M, Zhu Y M, Xia Y N. Science, 2009, 324: 1302-1305

[37] Singh S K, Singh A K, Aranishi K, Xu Q. J. Am. Chem. Soc., 2011, 133: 19638-19641

[38] Sun S H, Murray C B, Weller D, Folk L, Moser A. Science, 2000, 287: 1989-1992

[39] Yin A X, Min X Q, Zhang Y W, Yan C H. J. Am. Chem. Soc., 2011, 133: 3816-3819

[40] Hu M J, Lin B, Yu S H. Nano Res., 2008, 1: 303-313

[41] Peng Z, Yang H. J. Am. Chem. Soc., 2009, 131: 7542-7543

[42] Wang D S, Li Y D. J. Am. Chem. Soc., 2010, 132: 6280-6281

[43] Wang D S, Peng Q, Li Y D. Nano Res., 2010, 3: 574-580

[44] Chen W, Yu R, Li L L, Wang A N, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2010, 49: 2917-2921

[45] Wang A N, Peng Q, Li Y D. Chem. Mater., 2011, 23: 3217-3222

[46] Hong X, Wang D S, Yu R, Yan H, Sun Y, He L, Niu Z Q, Peng Q, Li Y D. Chem. Commun., 2011, 47: 5160-5162

[47] Yu X F, Wang D S, Peng Q, Li Y D. Chem. Commun., 2011, 8094-8096

[48] Wang D S, Zhao P, Li Y D. Sci. Rep., 2011, 1: 37. DOI: 101038/srep00037

[49] Liu X W, Li X Y, Wang D S, Yu R, Cui Y R, Peng Q, Li Y D. Chem. Commun., 2012, 1683-1685

[50] Wang D S, Li Y D. Adv. Mater., 2011, 23: 1044-1060

[51] Wu Y E, Wang D S, Zhao P, Niu Z Q, Peng Q, Li Y D. Inorg. Chem., 2011, 50: 2046-2048

[52] Wu Y E, Cai S F, Wang D S, He W, Li Y D. J. Am. Chem. Soc., 2012, 134: 8975-8981

[53] Niu Z Q, Wang D S, Yu R, Peng Q, Li Y D. Chem. Sci., 2012, 3: 1925-1929

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[7] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[8] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[9] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[10] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[11] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[12] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[13] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[14] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[15] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.