English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 435-445 DOI: 10.7536/PC120801 前一篇   后一篇

所属专题: 酶化学

• 新领域 •

生物无机化学范式的转变: 硅质海绵动物中二氧化硅的酶促缩聚反应

王晓红*1,2, 甘露2, Heinz C. Schröder2, Werner E.G. Müller*2   

  1. 1. 国家地质实验测试中心 中国地质科学院 北京 100037;
    2. 德国美因茨约翰尼斯-古腾堡大学医学中心生理化学所 美因茨 55128
  • 收稿日期:2012-07-01 修回日期:2012-08-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 王晓红, Werner E.G. Müller E-mail:wxh0408@hotmail.com; wmueller@uni-mainz.de
  • 基金资助:

    W.E.G. Müller is a holder of an ERC Advanced Investigator Grant (No. 268476 BIOSILICA) as well as an ERC Proof-of-Concept Grant (No. ERC-2012- PoC-324564). This work was supported by grants from the Deutsche Forschungsgemeinschaft (Schr 277/10-2), the European Commission (“BIOMINTEC”: No. 215507; and Industry-Academia Partnerships and Pathways “Core-Shell”: No. 286059; “SPECIAL”: No. 266033; “MarBioTec*EU-CN*”: No. 268476; and “BlueGenics”: No. 311848), the International Human Frontier Science Program, the Public Welfare Project of Ministry of Land and Resources of the People's Republic of China (Grant No. 201011005-06) and the International Science & Technology Cooperation Program of China (Grant No. 2008DFA00980).

Paradigm Shift in Bioinorganic Chemistry: Enzymatic Polycondensation Reaction of Silica in Siliceous Sponges

Wang Xiaohong*1,2, Gan Lu2, Heinz C. Schröder2, Werner E.G. M黮ler*2   

  1. 1. National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China;
    2. ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
  • Received:2012-07-01 Revised:2012-08-01 Online:2013-04-24 Published:2013-04-09

硅蛋白的发现导致了生物无机化学范式的转变,因为它是第一个可以催化无机单体合成无机聚合物分子的酶。分子生物学,生物化学和细胞生物学数据证实,两种硅质海绵动物,包括寻常海绵和六放海绵,它们的骨针都是由硅蛋白/酶催化合成的。这种酶不仅存在于硅质海绵骨针内部,而且也存在于硅质海绵骨针表面。在硅质海绵骨针生长过程中,它催化生物二氧化硅的合成而构建硅薄层,一层层的硅薄层逐步沉积从而形成硅质海绵骨针。寻常海绵动物Suberites domuncula体外实验获得的硅蛋白活性数据(催化生物二氧化硅的形成)反映了体内骨针生长所需的生物二氧化硅量。本文最后总结了在寻常海绵动物骨针生长和成熟过程中出现的生物熔合现象,即内部的硅薄层“烧结”在一起形成致密的硅棒。强壮的和坚硬的生物二氧化硅骨架的形成需要经历一个硬化过程,这个过程由海绵动物排水通道表面的细胞膜控制,排除生物二氧化硅缩聚反应过程中释放出的水分而使材料固化。

The discovery of silicatein caused a paradigm shift, since it is the first enzyme which catalyzes the synthesis of a polymeric inorganic molecule from inorganic monomers. Molecular biological, biochemical and cell-biological data showed that the synthesis of siliceous spicules in both demosponges and hexactinellids is enzymatically driven via silicatein. This enzyme exists both intra-spicularly and in the extra-spicular space. It catalyzes the formation of bio-silica constituting the silica lamellae that are formed during the appositional (layer-by-layer) growth of the spicules. The extent of (bio-silica forming) activity of silicatein from the demosponge Suberites domuncula measured in vitro reflects the amount of bio-silica required for the formation of spicules in vivo. It is furthermore summarized that during growth and maturation of the spicules in demosponges a bio-fusion process occurs that results in an intra-spicular sintering of the silica lamellae to form compact silica rods. Finally we report that for the formation of the strong and stiff bio-silica skeleton of sponges a hardening process is required that is (presumably) driven by cell-membrane bound aquaporin channels which allow the removal of water, which is released during the bio-silica polycondensation reaction.

中图分类号: 

()

[1] Wöhler F. Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie, 1828, 12: 253-256
[2] Pasteur L. Mémoire sur la fermentation appelée lactique. Mém. Soc. Sci. Agric. et Arts, 1857, 5: 13-26
[3] Hoppe-Seyler E F. Z. Physiol. Chem., 1877, 1: 1
[4] Spallanzani L, Senebier J. Experiences sur la Digestion de l’Homme et de Différentes especes d’Animaux. B. Geneve: Chirol, 1784
[5] Morse D E. Trends Biotechnol., 1999, 17: 230-232
[6] Krasko A, Gamulin V, Seack J, Steffen R, Schröder H C, Müller W E G. Molec. Marine Biol. & Biotechnol., 1997, 6: 296-307
[7] Müller W E G, Zahn R K. Gann Monograph on Cancer Research, 1976, 19: 51-62
[8] Xiao S, Yuan X, Knoll A H. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 13684-13689
[9] Walker G. Snowball Earth: The Story of the Great Global Catastrophe that Spawned Life as We Know it. New York: Crown Publishers, 2003
[10] Wang X H, Schröder H C, Müller W E G. Int. Rev. Cell Mol. Biol., 2009, 273: 69-115
[11] Gesner C. Historiae Animalium. Vol. 20. Zürich: Forer, 1558
[12] Iijma I. J. Coll. Sci. Imp. Univ. Tokyo, 1901, 18: 1-307
[13] Schulze F E. Hexactinellida. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer“Valdivia”1898-1899. Stuttgart: Fischer, 1904
[14] Gray J E. Ann. Philos., 1825, NS9: 431-432
[15] Wiens M, Wang X H, Natalio F, Schröder H C, Schloßmacher U, Wang S, Korzhev M, Geurtsen W, Müller W E G. Advanced Engin. Mat., 2010, 12: B438-B450
[16] Cha J N, Shimizu K, Zhou Y, Christianssen S C, Chmelka B F, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1999, 96: 361-365
[17] Krasko A, Batel R, Schröder H C, Müller I M, Müller W E G. Eur. J. Biochem., 2000, 267: 4878-4887
[18] Wiens M, Bausen M, Natalio F, Link T, Schlossmacher U, Müller W E G. Biomaterials, 2009, 30: 1648-1656
[19] Shimizu K, Cha J, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 6234-6238
[20] Müller W E G, Wang X H, Belikov S I, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir M N, Müller I M, Schröder H C. Formation of siliceous spicules in demosponges: example Suberites domuncula. In: Handbook of biomineralization, vol. 1. The biology of biominerals structure formation (Ed. Bäuerlein E). Weinheim: Wiley-VCH, 2007. 59-82
[21] Müller W E G, Wang X H, Kropf K, Boreiko A, Schloßmacher U, Brandt D, Schröder H C, Wiens M. Cell Tissue Res., 2008, 333: 339-351
[22] Müller W E G, Jochum K, Stoll B, Wang X H. Chem. Mater., 2008, 20: 4703-4711
[23] Wiens M, Schröder H C, Wang X H, Link T, Steindorf D, Müller W E G. Biochemistry, 2011, 50: 1981-1990
[24] Schloßmacher U, Wiens M, Schröder H C, Wang X H, Jochum K P, Müller W E G. Silintaphin-1: Interaction with Silicatein During Structure Guiding Biosilica Formation. FEBS J., 2011, 278: 1145-1155
[25] Imsiecke G, Steffen R, Custodio M, Borojevic R, Müller W E G. Formation of Spicules by Sclerocytes from the Freshwater Sponge Ephydatia muelleri in Short-term Cultures in vitro. In Vitro Cell. Dev. Biol., 1995, 31: 528-535
[26] Fairhead M, Johnson K A, Kowatz T, Mcmahon S A, Carter L G, Oke M, Liu H, Naismith J H, Van Der Walle C F. Chem. Commun., 2008, 21: 1765-1767
[27] Schröder H C, Wiens M, Schloßmacher U, Brandt D, Müller W E G. Silicon, 2012, 4: 33-38
[28] Croce G, Frache A, Milanesio M, Marchese L, Causà M, Viterbo D, Barbaglia A, Bolis V, Bavestrello G, Cerrano C, Benatti U, Pozzolini M, Giovine M, Amenitsch H. Biophys. J., 2004, 86: 526-534
[29] Flory P J, Semlyen J A. J. Am. Chem. Soc., 1966, 88: 3209-3212
[30] Wang X H, Schröder H C, Wiens M, Gan L, Tremel W, Müller W E G. in: Handbook of Marine Natural Products (Eds. Fattorusso E, Taglialatela-Scafati O, Gerwick W H). Berlin Heidelberg: Springer-Verlag, 2012. 1259-1284
[31] Müller W E G, Wang X H, Wiens M, Schloßmacher U, Jochum K P, Schröder H C. Biochim. Biophys. Acta, 2011, 1810: 713-726
[32] Müller W E G, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder H C. Cell Tissue Res., 2005, 321: 285-297
[33] Liu K, Nagase H, Huang C G, Calamita G, Agre P. Biol. Cell, 2005, 98: 153-161
[34] Hoque A T, Yamano S, Liu X, Swaim W D, Goldsmith C M, Delporte C, Baum B J. J. Cell Physiol., 2002, 191: 336-341
[35] Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Boston: Academic Press, 1990
[36] Müller W E G, Schloßmacher U, Eckert C, Krasko A, Boreiko A, Ushijima H, Wolf S E, Tremel W, Schröder H C. Europ. J. Cell Biology, 2007, 86: 473-487
[37] Wang X H, Schröder H C, Brandt D, Wiens M, Lieberwirth I, Glasser G, Schloßmacher U, Wang S F, Müller W E G. ChemBioChem, 2011, 12: 2316-2324
[38] Wang X H, Schröder H C, Wang K, Kaandorp J A, Müller W E G. Soft Matter, 2012, 8: 9501-9518
[39] Vogtherr H. Eyn kunstreichs wahrhafftigs vnd wohlbegründtes urteil vnd Secret büchlein, der harns, von allerlei farben, zircklen, wolcken, zeychen vnnd vnderstand, vom geschmack, auch vunderscheid des alters vnnd der jungen, auch der Weiber, deß menschen vnd des vihs, auß den allerhochberümntesten der artzney lerern zusammen gezogen von gepraticiertet worden. Straßburg: Heinrich Vogt, 1538

[1] 张金超*, 胡毅*, 余四旺, 高愈希, 张海松. 转化医学研究中的生物无机化学问题探讨[J]. 化学进展, 2013, 25(04): 469-478.
[2] 徐辉碧,杨晓达. 苟日新,日日新,又日新---值王夔教授八十寿诞侧记我国生物无机化学研究[J]. 化学进展, 2008, 20(05): 625-628.
[3] 毛宗万,安燕,计亮年. 关于我国生物无机化学发展战略的一点思考[J]. 化学进展, 2004, 16(04): 660-.
[4] 何成江,王梅,李敏娜,孙立成. 化学模拟唯铁氢化酶研究进展*[J]. 化学进展, 2004, 16(02): 250-.
[5] 黄开勋,刘琼,杨祥良,徐辉碧. 无机小分子与细胞中生物大分子的相互作用*[J]. 化学进展, 2004, 16(02): 308-.
[6] 张祖德,胡振波,刘清亮. EXAFS谱在生物无机化学中的应用[J]. 化学进展, 1996, 8(03): 213-.