English
新闻公告
More
化学进展 DOI: 10.7536/PC120753 前一篇   后一篇

• 综述与评论 •

硅纳米线阵列的制备及其光电应用

刘莉1,2, 曹阳2, 贺军辉*2, 杨巧文1   

  1. 1. 中国矿业大学(北京)化学与环境工程学院 北京 100083;
    2. 中国科学院理化技术研究所 北京 100190
  • 收稿日期:2012-07-01 修回日期:2012-09-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 贺军辉 E-mail:jhhe@mail.ipc.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 11104283)和国家重点基础研究发展计划(973)项目(No.2010CB934103)资助

Preparation and Optoelectronic Applications of Silicon Nanowire Arrays

Liu Li1,2, Cao Yang2, He Junhui*2, Yang Qiaowen1   

  1. 1. School of Chemical and Environmental Engineering,China University of Mining and Technology (Beijing), Beijing 100083, China;
    2. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2012-07-01 Revised:2012-09-01 Online:2013-02-24 Published:2012-12-28

近年来,硅纳米线阵列在宽波段、宽入射角范围内优异的减反射性能及其在光电领域的巨大应用前景引起了相关研究者的广泛关注。本文综述了国内外硅纳米线阵列的制备及其在光电应用方面的最新研究进展。关于硅纳米线阵列的制备方法,主要从“自下而上”和“自上而下”两大类出发,分别阐述了模板辅助的化学气相沉积法、化学气相沉积结合Langmuir-Blodgett技术法和金属催化化学刻蚀法,其中重点介绍了目前使用最为广泛且操作简单的金属催化化学刻蚀法的步骤、机理及控制参数。关于硅纳米线阵列在光电领域的应用,主要阐述了硅纳米线阵列在光电探测器、常规太阳能电池、光电化学太阳能电池、光催化分解水制氢、光催化降解有机污染物方面的应用。最后,从硅纳米线阵列在实际应用中面临的提高光电转换效率和避免硅纳米线阵列腐蚀以提高器件的稳定性等问题出发,展望了硅纳米线阵列的表面修饰及修饰后的性能研究是未来硅纳米线阵列光电应用研究的主要方向之一。

Recent years, silicon nanowire arrays have aroused extensive attention among scientists and engineers due to their unique characteristics such as excellent antireflection in both wide wavelength range and wide incidence angle and their great potentials in the field of optoelectronics. This paper reviews the latest research progress in preparation of silicon nanowire arrays and their optoelectronic applications. The preparation methods that have been verified are classified mainly into two categories, i.e., “bottom-up“and”top-down", including template-assisted chemical vapor deposition, chemical vapor deposition combined with Langmuir-Blodgett technology and metal-catalyzed chemical etching. The third method is at the present time the most frequently used as well as the simplest one, and is discussed in detail in respect of the etching steps, mechanism and controlling parameters. As for the optoelectronic applications of silicon nanowire arrays, this review mainly describes those in photodetectors, conventional solar cells, photoelectrochemical solar cells, photocatalytic water splitting, and photocatalytic degradation of organic pollutants. Finally, an outlook is made about how to improve the photoelectrical conversion efficiency and avoid the corrosion of silicon nanowire arrays, which indicates that surface modification and resulting properties may be a future research direction for silicon nanowire arrays research. Contents
1 Introduction
2 Preparation of silicon nanowire arrays
2.1 Bottom-up methods
2.2 Top-down methods
3 Optoelectronic applications of silicon nanowire arrays
3.1 Application in photodetectors
3.2 Application in solar cells, including conventional solar cells and photoelectrochemical solar cells
3.3 Application in photocatalysis
4 Conclusion and outlook

中图分类号: 

()

[1] Canham L T. Appl. Phys. Lett., 1990, 57(10): 1046-1048
[2] 李智伟(Li Z W), 陈浩(Chen H), 宋华冰(Song H B), 余洲(Yu Z), 杨治美(Yang Z M), 高艳丽(Gao Y L), 张云森(Zhang Y S), 刘俊刚(Liu J G), 龚敏(Gong M), 孙小松(Sun X S). 半导体光电(Semi Conductor Opto-electronics), 2009, 30 (2): 215-219
[3] Feng S Q, Yu D P, Zhan H Z. J. Cryst. Growth, 2000, 209: 513-517
[4] Au F C, Wong K W, Tang Y H. Appl. Phys. Lett., 1999, 75 (12): 1700-1702
[5] Li D Y, Wu Y Y, Kim P, Shi L, Yang P D, Majumdar A. Appl. Phys. Lett., 2003, 83(14): 2934-2936
[6] 裴立宅(Pei L Z). 半导体光电(Semiconductor Optoelectronics), 2007, 28(2): 156-160
[7] Zhu J, Yu Z F, George F, Burkhard, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y. Nano Lett., 2009, 9: 279-282
[8] Sun K, Jing Y, Park N, Li C, Bando Y, Wang D. J. Am. Chem. Soc., 2010, 132: 15465-15467
[9] Peng K Q, Wang X, Wu X L, Lee S T. Nano Lett., 2009, 11(9): 3704-3709
[10] Hwang Y J, Boukai A, Yang P D. Nano Lett., 2009, 9(1): 410-415
[11] 张晓丹(Zhang X D), 曹阳(Cao Y), 贺军辉(He J H). 化学进展(Progress in Chemistry), 2008, 20(7/8): 1064-1072
[12] Zhang X Y, Zhang L D, Meng G W. Adv. Mater., 2001, 13: 1238-1241
[13] Shimizu T, Xie T, Nishikawa J, Shingubara S, Gosele U. Adv. Mater., 2007, 19(7): 917-920
[14] Whang D, Jin S, Wu Y, Lieber C M. Nano Lett., 2003, 3(9): 1255-1259
[15] 裴立宅(Pei L Z), 唐元洪(Tang Y H), 陈扬文(Chen Y W), 张勇(Zhang Y), 郭池(Guo C). 电子元件与材料(Electronic Components & Materials), 2004, 23(10): 44-47
[16] Morales A M, Lieber C M. Science, 1998, 279: 208-211
[17] Pan Z W, Dai Z R, Lee S T. J. Phys. Chem. B, 2001, 105(13): 2507-2514
[18] Lu X M, Hanrath T, Korgel B A. Nano Lett., 2003, 3(1): 93-99
[19] 杨娟玉(Yang J Y), 卢世刚(Lu S G), 阚素荣(Kan S R), 张向军(Zhang X J), 丁海洋 (Ding H Y). 无机化学学报(Chinese J. Ionrg. Chem. ), 2009, (4): 756-760
[20] Peng K Q, Yan Y J, Gao S P, Zhu J. Adv. Mater., 2002, 14(16): 1164-1167
[21] Zhang M L, Peng K Q, Fan X, Jie J S, Zhang R Q, Lee S T, Wong N B. J. Phys. Chem., 2008, 112: 4444-4450
[22] Chang S W, Chuang V P, Boles S T, Thompson C V. Adv. Funct. Mater., 2010, 20: 4364-4370
[23] Peng K Q, Yan Y J, Gao S P, Zhu J. Adv. Funct. Mater., 2003, 13: 127-132
[24] Peng K Q, Xu Y, Wu Y, Yan Y J, Lee S T, Zhu J. Small, 2005, 1: 1062-1067
[25] Peng K Q, Wu Y, Fang H, Zhong X Y, Xu Y, Zhu J. Angew. Chem. Int. Ed., 2005, 44: 2737-2742
[26] Peng K Q, Hu J J, Yan Y J, Wu Y, Fang H, Xu Y, Lee S T, Zhu J. Adv. Funct. Mater., 2006, 16: 387-394
[27] Huang Z P, Fang H, Zhu J. Adv. Mater., 2007, 19: 744-748
[28] Zhang M L, Peng K Q, Fan X, Jie J S, Zhang R Q, Lee S T, Wong N B. J. Phys. Chem. C, 2008, 112: 4444-4450
[29] Hung Y J, Lee S L, Wu K C, Tai Y, Pan Y T. Opt. Express, 2011, 19(17): 15792-15802
[30] Huang Z P, Shimizu T H, Senz S, Zhang Z, Geyer N. J. Phys. Chem. C, 2010, 114: 10683-10690
[31] Ma D D, Lee C S, Lifshitz Y, Lee S T. Appl. Phys. Lett., 2002, 81: 3233-3235
[32] Chen H, Wang H, Zhang X H, Lee C S, Lee S T. Nano Lett., 2010, 10: 864-868
[33] 黄敏敏(Huang M M), 朱兴龙(Zhu X L). 机械工程与自动化(Mechanical Engineering and Automation), 2011, 12: 203-205
[34] Zhang A, Kim H K, Cheng J, Lo Y H. Nano Lett., 2010, 10(6): 2117-2120
[35] Zhou H, Fang G J, Yuan L Y. Appl. Phys. Lett., 2009, 94(1): art. no. 013503
[36] Sun K, Jing Y, Park N, Li C, Bando Y, Wang D. J. Am. Chem. Soc., 2010, 132: 15465-15467
[37] Lu S X, Panchapakesan B. Nanotechnology, 2006, 17: 1843-1850
[38] Itkis M E, Borondics F, Yu A, Haddon R C. Science, 2006, 312: 413-416
[39] Wei J Q, Jia Y, Shu Q K, Gu Z Y, Wang K L, Zhuang D M, Zhang G, Wang Z C, Luo J B, Cao A Y, Wu D H. Nano Lett., 2007, 7: 2317-2321
[40] Cao Y, He J H, Zhu J L, Sun J L. Chem. Phys. Lett., 2011, 501: 461-465
[41] Hochbaum A I, Yang P D. Chem. Rev., 2010, 110: 527-546
[42] Chen C, Jia R, Yue H H, Li H F, Liu X Y, Wu D Q, Ding W C, Ye T C, Kasai S, Tamotsu H, Chu J H, Wang S L. J. Appl. Phys., 2010, 108: art. no. 094318
[43] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L, Lieber C M. Nature, 2007, 449: 885-889
[44] Fan G F, Zhu H W, Wang K L, Wei J Q, Li X M, Shu Q K, Guo N, Wu D H. Appl. Mater. Int., 2011, 3: 721-725
[45] Maiolo J R, Kayes B M, Filler M A, Putnam M C, Kelzenberg M D, Atwater H A, Lewis N S. J. Am. Chem. Soc., 2007, 129: 12346-12347
[46] Dalchiele E A, Martin F, Leinen D, Leinen D, Marotti R E, Ramos-Barrado J R. J. Electrochem. Soc., 2009, 156: K77-K81
[47] Yuan G B, Zhao H Z, Liu X H, Hasanali Z S, Zou Y, Levine A, Wang D W J. Angew. Chem. Int. Ed., 2009, 48: 1-6
[48] Dalchiele E A, Martín F, Leinen D, Marotti R E, Ramos-Barrado J R. Thin Solid Films, 2010, 518: 1804-1808
[49] Fang H, Li X D, Song S, Xu Y Z. J. Nanotechnology, 2008, 19: art. no. 255703
[50] Wang X, Peng K Q, Pan X J, Chen X, Yang Y, Li L, Meng X M, Zhang W J, Lee S T. Angew. Chem. Int. Ed., 2011, 50: 9861-9865
[51] Fujishima A, Honda K. Nature, 1972, 238: 37-38
[52] Hwang Y J, Boukai A, Yang P D. Nano Lett., 2009, 9: 410-415
[53] Yu H T, Chen S, Quan X, Zhao H M, Zhang Y B. Appl. Catal. B:Environ., 2009, 90: 242-248
[54] Yu H T, Li X Y, Quan X, Chen S, Zhang Y B. Environ. Sci. Technol., 2009, 43: 7849-7855

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[7] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[8] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[9] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[10] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[11] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[12] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[13] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[14] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[15] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.