English
新闻公告
More
化学进展 DOI: 10.7536/PC120713 前一篇   后一篇

• 综述与评论 •

金属有机框架化合物在非均相催化反应中的应用

刘兵, 介素云*, 李伯耿*   

  1. 浙江大学化学工程与生物工程学系 化学工程联合国家重点实验室 聚合与聚合物工程研究所 杭州 310027
  • 收稿日期:2012-07-01 修回日期:2012-09-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 介素云, 李伯耿 E-mail:jiesy@zju.edu.cn; bgli@zju.edu.cn
  • 基金资助:

    中央高校基本科研业务费专项资金项目(No.2012FZA4025)和国家重点基础研究发展计划(973)项目(No.2011CB606001)资助

Metal-Organic Frameworks for Heterogeneous Catalysis

Liu Bing, Jie Suyun*, Li Bogeng*   

  1. State Key Laboratory of Chemical Engineering, Institute of Polymerization and Polymer Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2012-07-01 Revised:2012-09-01 Online:2013-01-24 Published:2012-12-27

金属有机框架化合物(metal-organic frameworks, MOFs)是近年来出现的一种新型无机材料,不仅具有非常高的表面积和孔隙率,而且材料的框架结构丰富、可控,可用于气体吸附、生物医学以及磁性材料等,应用前景广阔。特别是MOFs在非均相催化反应中的应用更是吸引了大批学者的注意,研究发展非常迅速,已取得了许多成果。本文首先介绍了MOFs作为催化剂所具有的独特优点,实际应用中可能存在的问题,以及相应的解决方案;其次基于MOFs的三个结构要素系统总结了目前MOFs在非均相催化反应中的探索和应用;最后讨论了MOFs在非均相催化研究中需要重视的问题,以期为MOFs在非均相催化反应中的应用研究提供参考。

In recent years, metal-organic frameworks (MOFs) as a new type of inorganic materials have been discovered. Because of their high surface area and porosity, various and controllable frameworks, they have been extensively used in gas sorption, biomedicine, magnetic field and so on. Particularly, the application of MOFs as heterogeneous catalysts has attracted more attention and many achievements have been gained. In this review, the unique advantages of MOFs catalysts, the possible problems in practical applications and the corresponding solutions are firstly introduced. And then, we summarize the exploration and application of MOFs in catalytic reactions based on their three structural elements such as metal vertex, organic ligand and pore system. Examples of the catalytic reactions are followed. At last, the problems need to be focused and prospective directions on MOFs catalysts are discussed. Contents
1 Introduction
2 Classification of MOFs catalysts and its application
2.1 MOFs with metal active sites
2.2 MOFs with reactive functional groups
2.3 MOFs as supporters or nanometric reactors
3 Conclusion and outlook

中图分类号: 

()

[1] Batten S R, Hoskins B F, Robson R. J. Am. Chem. Soc., 1995, 117(19): 5385-5386
[2] Li H, Eddaoudi M, O'Keeffe M, Yaghi M O. Nature, 1999, 402(6759): 276-279
[3] Yaghi O M, Li H. J. Am. Chem. Soc., 1995, 117(41): 10401-10402
[4] Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. Science, 2005, 309: 2040-2042
[5] Kitagawa S, Kondo M. Bull. Chem. Soc. Jpn., 1998, 71: 1739-1753
[6] Corma A, Garciía H, Llabreés I Xamena F X. Chem. Rev., 2010, 110(8): 4606-4655
[7] Llabres I Xamena F X, Abad A, Corma A, Garcia H. J. Catal., 2007, 250(2): 294-298
[8] Alaerts L, Seguin E, Poelman H, Thibault-Starzyk F, Jacobs P A, DeVos D K. Chem. Eur. J., 2006, 12(28): 7353-7363
[9] Llabres I Xamena F X, Corma A, Garcia H. J. Phys. Chem. C, 2006, 111(1): 80-85
[10] Huang X, Lin Y, Zhang J, Chen X. Angew. Chem. Int. Ed., 2006, 45(10): 1557-1559
[11] Decoste J B, Peterson G W, Smith M W, Smith M W, Stone C A, Willis C R. J. Am. Chem. Soc., 2012, 134(3): 1486-1489
[12] 刘丽丽(Liu L L), 张鑫(Zhang X), 徐春明(Xu C M). 化学进展(Progress in Chemistry), 2010, 11(22): 2089-2098
[13] Horcajada P, Surble S, Serre C, Hong D, Seo Y, Chang J, Greneche J, Margiolaki I, Ferey G. Chem. Commun., 2007, 2820-2822
[14] Jian L, Chen C, Lan F, Deng S, Xiao W, Zhang N. Solid State Sci., 2011, 13(5): 1127-1131
[15] Deng S, Zhang N, Xiao W, Chen C. Inorg. Chem. Commun., 2009, 12: 157-160
[16] Pathan N B, Rahatgaonkar A M, Chorghade M S. Catal. Commun., 2011, 12(12): 1170-1176
[17] Neogi S, Sharma M K, Bharadwaj P K. Knoevenagel. J. Mol. Catal. A: Chem., 2009, 299(1/2): 1-4
[18] Mahata P, Aarthi T, Madras G, Natarajan S. J. Phys. Chem. C, 2007, 111(4): 1665-1674
[19] Vitorino M, Devic T, Tromp M, Ferey M, Visseaux M. Macromol. Chem. Phys., 2009, 210(22): 1923-1932
[20] Wilson D. Polym. Int., 1996, 39(3): 235-242
[21] Rodrigues I, Mihalcea I, Volkringer C, Loiseau T, Visseaux M. Inorg. Chem., 2012, 51(1): 483-490
[22] Bahuleyan B K, Lee U, Ha C S, Kim I. Appl. Catal. A: General, 2008, 351(1): 36-44
[23] Kermagoret A, Braunstein P. Organometallics, 2008, 27(1): 88-99
[24] Souza R F, Bernardo-Gusmao K, Cunha G A, Loup C, Leca F, Reau R. J. Catal., 2004, 226(1): 235-239
[25] Lallemand M, Finiels A, Fajula F, Hulea V. J. Phys. Chem. C, 2009, 113(47): 20360-20364
[26] Zhang Q, Lana I G D. Chem. Eng. Sci., 1997, 52(21/22): 4187-4195
[27] Kyogoku K, Yamada C, Suzuki Y, Nishiyama S, Fukumoto K, Yamamoto H, Indo S, Sano M, Miyake T. J. Jpn. Petrol. Inst., 2010, 53(5): 308-312
[28] Hulea V, Fajula F. J. Catal., 2004, 225(1): 213-222
[29] Chuck C J, Davidson M G, Jones M D, Kociok-Kohn G, Lunn M D, Wu S. Inorg. Chem., 2006, 45(17): 6595-6597
[30] Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. J. Am. Chem. Soc., 2007, 129(9): 2607-2614
[31] Ingleson M J, Barrio J P, Bacsa J, Dickinson C, Park H, Rosseinsky M J. Chem. Commun., 2008, 1287-1289
[32] Roberts J M, Fini B M, Sarjeant A A, Farha O K, Hupp J T, Scheidt K A. J. Am. Chem. Soc., 2012, 134(7): 3334-3337
[33] Cohen S M. Chem. Rev., 2011, 112(2): 970-1000
[34] Wang Z, Cohen S M. J. Am. Chem. Soc., 2007, 129(41): 12368-12369
[35] Ingleson M J, Perez Barrio J, Guilbaud J, Khimyak Y Z, Rosseinsky M J. Chem. Commun., 2008, 2680-2682
[36] Zhang X, Llabrés I Xamena F X, Corma A. J. Catal., 2009, 265(2): 155-160
[37] Garibay S J, Wang Z, Cohen S M. Inorg. Chem., 2010, 49(17): 8086-8091
[38] Aguado S, Canivet J, Farrusseng D. Chem. Commun., 2010, 7999-8001
[39] Canivet J, Aguado S, Daniel C, Farrusseng D. ChemCatChem, 2011, 3(4): 675-678
[40] Alkordi M H, Liu Y, Larsen R W, Eubank J F, Eddaoudi M. J. Am. Chem. Soc., 2008, 130(38): 12639-12641
[41] Wang W, Li Y, Zhang R, He D, Liu H, Liao S. Catal. Commun., 2011, 12(10): 875-879
[42] Zhao H, Song H, Chou L. Inorg. Chem. Commun., 2012, 15: 261-265
[43] Uemura T, Kitagawa K, Horike S, Kawamura T, Kitagawa S, Mizuno M, Endo K. Chem. Commun., 2005, 5968-5970
[44] Zhou X, Xu Z, Zeller M, Hunter A D, Chui S S, Che C, Lin J. Inorg. Chem., 2010, 49(17): 7629-7631
[45] Ni Z, Masel R I. J. Am. Chem. Soc., 2006, 128(38): 12394-12395
[46] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2011, 112(2): 196-1231

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[7] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[8] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[14] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[15] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.