English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 276-287 DOI: 10.7536/PC120655 前一篇   后一篇

• 综述与评论 •

热液法制备磁性纳米材料

李亦婧, 朱浩, 侯晨, 江宇, 李彦锋*   

  1. 兰州大学 功能有机分子化学国家重点实验室 化学化工学院 生物化工及环境技术研究所 兰州 730000
  • 收稿日期:2012-06-01 修回日期:2012-11-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 李彦锋 E-mail:liyf@lzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21074049)和国家基础科学人才培养基金-能力提高项目(No.J1103307)资助

Hydrothermal & Solvothermal Synthesis of Nanoscale Magnetic Materials

Li Yijing, Zhu Hao, Hou Chen, Jiang Yu, Li Yanfeng*   

  1. State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, China
  • Received:2012-06-01 Revised:2012-11-01 Online:2013-02-24 Published:2012-12-28

磁性纳米材料作为新兴的无机功能材料,因其具有与常规材料不同的特殊性质,如高比表面积、强磁响应性、良好的化学稳定性和生物相容性等,被广泛应用在生物合成、生物分离、生物传感器、免疫测定、有机催化、药物传输、数据存储和环境治理等方面。目前合成磁性纳米材料的方法主要有化学共沉降法、高温热分解法、溶胶-凝胶法及热液法等。由于热液法具有条件简易、成本低廉、反应活性高、产率可观和绿色环保等优势,近年来受到了广泛的关注,并已应用在工业生产中。本文根据磁性材料组成与构成方式的不同,综述了热液法合成磁性纳米材料的研究进展。

Nanoscale mgnetic materials as a kind of novel functional inorganic materials have been widely employed for biosynthesis, bioseparation, biosensors, immunoassays, organocatalysis, drug delivery, data storage and environmental improvement,due to their special properties such as high specific surface area, strong magnetic responsivity, chemical durability,biocompatibility and so on. So far, various synthetic methods have been devised to fabricate magnetic nanomaterials, including chemical coprecipitation, organometallic pyrolysis, sol-gel techniques, hydrothermal & solothermal synthesis, etc. In recent years, hydrothermal & solvothermal synthesis method has received extensive attention and is widely used in industrial production because of its advantages of simple reaction conditions, low cost, high activity, good yields and green-friendly. This review introduced four kinds of nanoscale magnetic material synthetized by hydrothermal or solvothermal,which are ferrite,composite material,magnetic alloy material,and other magnetic material. 1 Introduction
2 Ferrite
2.1 Unitary ferrite
2.2 Binary ferrite
3 Composite material
3.1 Ferrite/inorganics composite material
3.2 Ferrite/organics composite material
4 Magnetic alloy material
5 Other magnetic material
6 Conclusion and prosperct

中图分类号: 

()

[1] Sugimoto T, Matijevic E. J. Colloid. Interface. Sci., 1980, 74: 227-243
[2] 李泉(Li Q), 曾广斌(Zeng G B), 席时权(Xi S Q). 化学通报(Chemistry), 1995, 6: 29-34
[3] 赵强(Zhao Q). 原子与分子物理学报(Journal of Atomic and Molecular Physics), 2005, 22: 89-95
[4] Grutner C, Rudershausen S, Teller J. J. Magn. Magn. Mater., 2001, 225: 1-7
[5] Hu F Q, MacRenaris K W, Waters E A, Schultz-Sikma E A, Eckermann A L, Meade T J. Chem. Commun., 2010, 46: 73-75
[6] Huang X L, Zhuang J, Chen D, Liu H Y, Tang F Q, Yan X Y, Meng X W, Zhang L, Ren L. Langmuir, 2009, 25(19): 11657-11663
[7] 张立德(Zhang L D), 牟季美(Mou J M). 纳米材料和纳米结构(Nanometer materials and nanometer structure). 北京: 科学出版社(Beijing: Science Press), 2002. 20
[8] Sehultz R M, Silberman S, Persky B, Baikowski A S, Cormichael D F. Cancer Res., 1988, 48: 5539-5545
[9] 洪小平(Hong X P), 彭图治(Peng T Z). 分析化学(Chinese Journal of Analytical Chemistry), 2003, 31(7): 789-793
[10] 王胜林(Wang S L), 王强斌(Wang Q B), 古宏晨(Gu H C). 化学世界(Chemical World), 2001(7): 384-386
[11] Arturo M, Lopez Q, Jose R. J. Colloid. Interf. Sci., 1993, 15(8): 446-451
[12] 蒋秉植(Jiang B Z), 杨健美(Jiang J M). 化学进展(Progress in Chemistry), 1997, 9(1): 69-78
[13] Sun Y K, Duan L, Guo Z R. J. Magn. Magn. Mater., 2005, 285: 65-70
[14] Stoeva S I, Huo F, Lee J, Mirkin C A. J. Am. Chem. Soc., 2005, 127(44): 15362-15363
[15] Smolensky E D, Park H Y E, Berquo T S, Pierrea V C. Contrast Media Mol. Imaging, 2011, 6(4): 189-199
[16] Xu X Q, Deng C H, Gao M X, Yu W J, Yang P Y, Zhang X M. Adv. Mater., 2006, 18: 3289-3293
[17] Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H. Adv. Mater., 2010, 22: 2729-2742
[18] Hofmann A, Thierbach S, Semisch A, Hartwig A, Taupitz M, Rühl E, Graf C. J. Mater. Chem., 2010, 20: 7842-7853
[19] Feltin N, Peleni M P. Langmuir, 1997, 13: 3927-3933
[20] 丁明(Ding M), 曾桓兴(Zeng H X). 无机材科学报 (Journal of Inorganic Materials), 1998, 13: 619-624
[21] Massart R. IEEE Trans. Magn., 1981, 17: 1247-1250
[22] Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124: 8204-8205
[23] Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X. J. Am. Chem. Soc., 2004, 126: 273-279
[24] Itoh H, Sugimoto T. J. Colloid Interf. Sci., 2003, 265: 283-295
[25] Cheng F Y, Sua C H, Yang Y S. Biomaterials, 2005, 26(7): 729-738
[26] Fan R, Chen X H, Gui Z, Liu L, Chen Z Y. Mater. Res. Bull., 2001, 36: 197-502
[27] Konishi Y, Nomura T, Mizoe K. Hydrometallurgy, 2004, 74: 57-65
[28] 甘志锋(Gan Z F), 姜继森(Jiang J S). 化学进展(Progress in Chemistry), 2005, 17(6): 978-986
[29] Franger S, Berthet P, Berthon J. J. Solid State Electr., 2004, 8: 218-223
[30] Ge J P, Hu Y X, Biasini M, Dong C, Guo J H, Beyermann W P, Yin Y D. Chem. Eur. J., 2007, 13: 7153-7161
[31] Liang X, Wang X, Zhuang J, Chen Y T, Wang D S, Li Y D. Adv. Funct. Mater., 2006, 16: 1805-1813
[32] Jia X, Chen D R, Jiao X L, Zhai S M. Chem. Commun., 2009, 968-970
[33] Demazeau G. Res. Chem. Intermed., 2011, 37(2/5): 107-123
[34] 施尔畏(Shi E W), 夏长泰(Xia C T), 王步国(Wang B G). 无机材料学报(Journal of Inorganic Materials), 1996, 11(2): 193-206
[35] 王成云(Wang C Y), 苏庆德(Su Q D), 钱逸泰(Qian Y T). 化学研究与应用(Chemical Research and Application), 2001, 13(4): 402-405
[36] Deng H, Li X, Peng Q, Wang X, Chen J, Li Y D. Angew. Chem., 2005, 117: 2842-2845
[37] Wang L Y, Bao J, Wang L, Zhang F, Li Y D. Chem. Eur. J., 2006, 12: 6341-6347
[38] Zhu L P, Xiao H M, Zhang W D, Yang G, Fu S Y. Crystal Growth & Design, 2008, 8: 957-963
[39] Zou G, Xiong K, Jiang C, Li H, Li T, Du J, Qian Y. J. Phys. Chem. B, 2005, 109: 18356-18360
[40] Wang J, Wu Y, Zhu Y. Mater. Chem. Phys., 2007, 106: 1-4
[41] Liu J, Sun Z K, Deng Y H, Zou Y, Li C Y, Guo X H, Xiong L Q, Gao Y, Li F Y, Zhao D Y. Angew. Chem., 2009, 121: 5989-5993
[42] Li X Y, Si Z J, Lei Y Q, Tang J K, Wang S, Su S Q, Song S Y, Zhao L J, Zhang H J. Cryst. Eng. Comm., 2010, 12: 2060-2063
[43] Dong F P, Guo W P, Bae J H, Kim S H, Ha C S. Chem. Eur. J., 2011, 17: 12802-12808
[44] Wang S B, Min Y L, Yu S H. J. Phys. Chem. C, 2007, 111: 3551-3554
[45] Jianmin M, Lian J B, Duan X C, Liu X D, Zheng W J. J. Phys. Chem. C, 2010, 114: 10671-10676
[46] Li X, Yu X, He J H, Xu Z. J. Phys. Chem. C, 2009, 113(7): 2837-2845
[47] Islam Md S, Kusumoto Y, Abdulla-Al-Mamun Md. Mater. Lett., 2012, 66: 165-167
[48] Zhou J, Ma J F, Sun C, Xie L J, Zhao Z Q, Tian H. J. Am. Ceram. Soc., 2005, 88 (12): 3535-3537
[49] Yu B Y, Kwak S Y. Dalton Trans., 2011, 40: 9989-9998
[50] Gu Z J, Xiang X, Fan G L, Li F. J. Phys. Chem. C, 2008, 112: 18459-18466
[51] Wang Y Q, Cheng R M, Wen Z, Zhao L. J. Eur. J. Inorg. Chem., 2011, (19): 2942-2947
[52] Gajovi D? A, Šturm S, Janwar B, Šanti D? A, agar K, eh M. J. Am. Ceram. Soc., 2010, 93: 3173-3179
[53] Liu B, Hu B B, Du Z L. Chem. Commun., 2011, 47: 8166-8168
[54] Drofenik M, Kristl M, nidarši D? A, Han?e D, Lisjak D. J. Am. Ceram. Soc., 2007, 90: 2057-2061
[55] Wang Z F, Guo H S, Yu Y L, He N Y. J. Magn. Magn. Mater., 2006, 302: 397-404
[56] She X P, Wu J L, Ba S, Zhou H. Alloys Compd., 2010, 506: 136-140
[57] Zhou K F, Zhu Y H, Yang X L, Li C Z. New J. Chem., 2010, 34: 2950-2955
[58] Wu H X, Liu G, Wang X, Zhang J M, Chen Y, Shi J L, Yang H, Hu H, Yang S P. Acta Biomaterialia, 2011, 7: 3496-3504
[59] Zhang E L, Tang Y H, Peng K, Guo C, Zhang Y. Solid State Commun., 2008, 148: 496-500
[60] Guo X H, Deng Y H, Gu D, Che R C, Zhao D Y. J. Mater. Chem., 2009, 19: 6706-6712
[61] Zhang L, Chen L, Wan Q H. Chem. Mater., 2008, 20: 3345-3353
[62] Gao G, Wu H X, Zhang Y X, Luo T, Feng L L, Huang P, He M, Cui D X. CrystEngComm, 2011, 13: 4810-4813
[63] Liu B, Zhang W, Yang F K, Feng H L, Yang X L. J. Phys. Chem. C, 2011, 115: 15875-15884
[64] Xu S, Ma W F, You L J, Li J M, Guo J, Hu J J, Wang C C. Langmuir, 2012, 28: 3271-3278
[65] Liao Q L, Tannenbaum R, Wang Z L. J. Phys. Chem. B, 2006, 110: 14262-14265
[66] Zhou X M, Wei X W. Cryst. Growth. Des., 2009, 9: 7-12
[67] Jia J C, Yu J C, Wang Y X, Chan K M. Appl. Mater. Inter., 2010, 2(9): 2579-2584
[68] Liu A P, Chen X Y, Zhang Z J, Jiang Y, Shi C W. Solid State Commun., 2006, 138: 538-541
[69] Chen L Q, Yang X F, Fu X H, Wang C M, Liang C L, Wu M M. Eur. J. Inorg. Chem., 2011, 2098-2102
[70] Gao M R, Lin Z Y, Jiang J, Yao H B, Lu Y M, Gao Q, Yao W T, Yu S H. Chem. Eur. J., 2011, 17: 5068-5075
[71] Ghosh M, Sampathkumaran E V, Rao C N R. Chem. Mater., 2005, 17: 2348-2352
[72] Hu M J, Lu Y, Zhang S, Guo S R, Lin B, Zhang M, Yu S H. J. Am. Chem. Soc., 2008, 130: 11606-11607
[73] Zhang Y J, Yao Q, Zhang Y, Cui T Y, Li D, Liu W, Lawrence W, Zhang Z D. Cryst. Growth Des., 2008, 8: 3206-3212
[74] Alagiri M, Muthamizhchelvan C, Ponnusamy S. Mater. Lett., 2011, 65: 1565-1568
[75] Cheng M Z, Wen M, Zhou S Q, Wu Q S, Sun B L. Inorg. Chem., 2012, 51: 1495-1500
[76] 吴会军(Wu H J), 朱冬生(Zhu D S), 向兰(Xiang L). 化工新型材料(New Chemical Materials), 2005, 33(8): 1-4

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[5] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[6] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[7] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[8] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[9] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[10] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[15] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
阅读次数
全文


摘要

热液法制备磁性纳米材料