English
新闻公告
More
化学进展 DOI: 10.7536/PC120636 前一篇   后一篇

• 综述与评论 •

NO2在黑碳表面的非均相反应

沈利娟, 张泽锋*   

  1. 南京信息工程大学 中国气象局大气物理与大气环境重点开放实验室 南京 210044
  • 收稿日期:2012-06-01 修回日期:2012-09-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 张泽锋 E-mail:zhangzf01@vip.163.com
  • 基金资助:

    国家自然科学基金项目(No. 41005071)、江苏省高校自然科学研究重大项目(No. 12KJA170003)、中国气象局大气物理与大气环境重点开放实验室开放基金项目(No. KDW1103)和江苏高校优势学科建设工程项目(PAPD)资助

Heterogeneous Reactions of NO2 on the Surface of Black Carbon

Shen Lijuan, Zhang Zefeng*   

  1. Key Laboratory for Atmospheric Physics and Environment, CMA, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2012-06-01 Revised:2012-09-01 Online:2013-01-24 Published:2012-12-27

HONO是大气中OH自由基的重要来源,NO2在黑碳表面可反应生成HONO,因此NO2在黑碳表面的非均相反应引起了人们的关注。目前不同研究小组测量的摄取系数可相差7个数量级,选择不同的摄取系数去评估非均相反应的重要性将得到完全不同的结果。本文在深入分析NO2在黑碳表面反应机理的基础上,从反应体系、黑碳表面性质、反应条件等角度对不同小组测量的摄取系数存在差异的原因进行了分析,为模式中摄取系数的选取提供了依据。

HONO is the main source of hydroxyl radical (OH) in the atmosphere, and is formed by the reaction of NO2 on the surface of black carbon. Therefore, the heterogeneous reactions of NO2 on the surface of black carbon have been attracted scientists in the past years. The uptake coefficients varied 7 orders of magnitude in different research groups. For assessing the importance of the heterogeneous reaction, the results are different when selecting different uptake coefficients. On the basis of a deep analysis of the reaction mechanism of NO2 with black carbon, the reasons of the discrepancy in uptake coefficients were analyzed according to reaction system, surface properties of black carbon and reaction condition. The results will provide a basis for the selection of uptake coefficients in the model. Contents
1 Introduction
2 Heterogeneous reaction mechanism of NO2 on the surface of black carbon
2.1 Reactions of NO2 on the surface of black carbon
2.2 Oxidation-reduction reactions of NO2 on the surface of black carbon
3 Uptake coefficients of NO2 on the surface of black carbon
3.1 Effects of the reaction system on uptake coefficients
3.2 Effects of the surface properties of black carbon on uptake coefficients
3.3 Effects of the reaction conditions on uptake coefficients
4 Conclusions and outlook

中图分类号: 

()

[1] 叶春翔(Ye C X), 李宏军(Li H J), 朱彤(Zhu T), 尚静(Shang J), 张泽锋(Zhang Z F), 赵德峰(Zhao D F). 中国科学: 化学(Scientia Sinica Chimica), 2010, 40(12): 1765-1771
[2] Liu Y J, Zhu T, Zhao D F, Zhang Z F. Atmos. Chem. Phys., 2008, 8: 7205-7215
[3] 李宏军(Li H J), 朱彤(Zhu T), 丁杰(Ding J), 陈琦(Chen Q), 徐冰烨(Xu B Y). 中国科学: 化学(Scientia Sinica Chimica), 2005, 35(6): 506-512
[4] Monge M E, D’Anna B, Mazri L, Giroir-Fendler A, Ammann M, Donaldson D J, George C. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(15): 6605-6609
[5] Stemmler K, Ammann M, Donders C. Nature, 2006, 440: 195-198
[6] Brigante M, Cazoir D, D’Anna B, George C, Donaldson D J. J. Phys. Chem. A, 2008, 112(39): 9503-9508
[7] Bejan I, Abd EI Aal Y, Barnes I, Benter T, Bohn B, Wiesen P, Kleffmann J. Phys. Chem. Chem. Phys., 2006, 8: 2028-2035
[8] Finlayson-Pitts B J. Chem. Rev., 2003, 103(12): 4801-4822
[9] Vogt R, Elliott C, Allen H C, Laux J M, Hemminger J C, Finlayson-Pitts B J. Atmos. Environ., 1996, 30(10): 1729-1737
[10] Zhang Y, Carmichael G R. J. Appl. Mete., 1999, 38: 353-366
[11] Ammann M, Kalberer M, Jost D T. Nature, 1998, 395: 157-159
[12] Khalizov A, Cruz-Quinones M, Zhang R. J. Phys. Chem. A, 2010, 114: 7516-7524
[13] Stadler D, Rossi M J. Phys. Chem. Chem. Phys., 2000, 2: 5420-5429
[14] 张泽锋(Zhang Z F), 朱彤(Zhu T), 赵德峰(Zhao D F), 李宏军(Li H J). 化学进展(Progress in Chemistry), 2009, 21: 282-287
[15] Ren X R, Harder H, Martinez M, Lesher R L, Oliger A, Simpas J B, Brune W H, Schwab J J, Demerjian K L, He Y, Zhou X L, Gao H L. Atmos. Environ., 2003, 37: 3639-3651
[16] Kleffmann J, Gavriloaiei T, Hofzumahaus A, Holland F, Koppmann R, Rupp L, Schlosser E, Siese M, Wahner A. Geophys. Res. Lett., 2005, 32: art. no. L05818. DOI: 10.1029/2005GL022524
[17] Acker K, Moller D, Wieprecht W, Meixner F X, Bohn B, Gilge S, Plass-Dulmer C, Berresheim H. Geophys. Res. Lett., 2006, 33: art. no. L02809. DOI: 10.1029/2005GL024643
[18] Zhou X L, Civerolo K, Dai H P, Huang G, Schwab J, Demerjian K. J. Geophys. Res., 2002, 107(D21): art. no. 4590. DOI: 10.1029/2001JD001539
[19] Zhou X L, Beine H J, Honrath R E, Fuentes J D, Simpson W, Shepson P B, Bottenheim J W. Geophys. Res. Lett., 2001, 28(21): 4087-4090
[20] 张泽锋(Zhang Z F), 朱彤(Zhu T), 尚静(Shang J), 张德峰(Zhang D F), 叶春翔(Ye C X). 环境科学学报(Acta Scientiae Circumstantiae), 2011, 31(10): 2073-2079
[21] Zhang Y H, Hu M, Zhong L J, Wiedensohler A, Liu S C, Andreae M O, Wang W, Fan S J. Atmos. Environ., 2008, 42: 6157-6173
[22] 唐孝炎(Tang X Y), 张远航(Zhang Y H), 邵敏(Shao M). 大气环境化学, 第2版(Atmospheric Environmental Chemistry, 2nd edition). 北京: 高等教育出版社(Beijing: Higher Education Press), 2006. 221
[23] Harwood E A, Hopkins P B, Sigurdsson S T. J. Org. Chem., 2000, 65(10): 2959-2964
[24] Arens F, Gutzwiller L, Baltensperger U, Gaggeler H, Ammann M. Environ. Sci. Technol., 2001, 35: 2191-2199
[25] Mertes S, Wahner A. J. Phys. Chem., 1995, 99(38): 14000-14006
[26] Finlayson-Pitts B J, Wingen L M, Sumner A L, Syomin D, Ramazan K A. Phys. Chem. Chem. Phys., 2003, 5(2): 223-242
[27] Gerecke A, Thielmann A, Gutzwiller L, Rossi M J. Geophys. Res. Lett., 1998, 25(13): 2453-2456
[28] Spindler G, Hesper J, Bruggemann E, Dubois R, Muller T, Herrmann H. Atmos. Environ., 2003, 37: 2643-2662
[29] Kleffmann J, Becker K H, Wiesen P. Atmos. Environ., 1998, 32(16): 2721-2729
[30] Longfellow C A, Ravishankara A R, Hanson D R. J. Geophys. Res., 1999, 104(D11): 13833-13840
[31] Borensen C, Kirchner U, Scheer V, Vogt R, Zellner R. J. Phys. Chem. A, 2000, 104(21): 5036-5045
[32] Kalberer M, Ammann M, Gaggeler H W, Baltensperger U. Atmos. Environ., 1999, 33: 2815-2822
[33] Aubin D G, Abbatt J P D. J. Phys. Chem. A, 2007, 111: 6263-6273
[34] Alfassi Z B, Huie R E, Neta P. J. Phys. Chem., 1986, 90(17): 4156-4158
[35] Saltzman B E. Anal. Chem., 1954, 26: 1948-1955
[36] Levaggi D, Kothny E L, Belsky T, de Vera E, Mueller P K. Environ. Sci. Technol., 1974, 8(4): 348-350
[37] Pryor W A, Lightsey J W. Science, 1981, 214(4519): 435-437
[38] Gutzwiller L, Arens F, Baltensperger U, Gaggeler H W, Ammann M. Environ. Sci. Technol., 2002, 36(4): 677-682
[39] Tabor K, Gutzwiller L, Rossi M J. Geophys. Res. Lett., 1993, 20(14): 1431-1434
[40] Tabor K, Gutzwiller L, Rossi M J. J. Phys. Chem., 1994, 98(24): 6172-6186
[41] Rogaski C A, Golden D M, Williams L R. Geophys. Res. Lett., 1997, 24(4): 381-384
[42] Salgado M S, Rossi M J. Int. J. Chem. Kinet., 2002, 34(11): 620-631
[43] Kalberer M, Ammann M, Arens F, Gaggeler H W, Baltensperger U. J. Geophys. Res., 1999, 104(D11): 13825-13832
[44] Kleffmann J, Becker K H, Lackhoff M, Wiesen P. Phys. Chem. Chem. Phys., 1999, 1: 5443-5450
[45] Kirchner U, Scheer V, Vogt R. J. Phys. Chem. A, 2000, 104: 8908-8915
[46] Saathoff H, Naumann K H, Riemer N, Kamm S, Mohler O, Schurath U, Vogel H, Vogel B. Geophys. Res. Lett., 2001, 28(10): 1957-1960
[47] Prince A P, Wade J L, Grassian V H, Kleiber P D, Young M A. Atmos. Environ., 2002, 36: 5729-5740
[48] Lelievre S, Bedjanian Y, Laverdet G, Le Bras G. J. Phys. Chem. A, 2004, 108(49): 10807-10817
[49] Alcala-Jornod C, van Den Bergh H, Rossi M J. Phys. Chem. Chem. Phys., 2000, 2: 5584-5593
[50] Fan J W, Zhang R Y. Environ. Chem., 2004, 1(3): 140-149
[51] Lei W F, Zhang R Y, McGivern W S, Derecskei-Kovacs A, North S W. Chem. Phys. Lett., 2000, 326: 109-114
[52] Suh I, Lei W F, Zhang R Y. J. Phys. Chem. A, 2001, 105: 6471-6478
[53] Zhang R Y, Khalizov A F, Pagels J, Zhang D, Xue H X, McMurry P H. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(30): 10291-10296
[54] Shiraiwa M, Kondo Y, Moteki N, Takegawa N, Miyazaki Y, Blake D R. Geophys. Res. Lett., 2007, 34(16): art. no. L16803. DOI: 10.1029/2007GL029819
[55] Kleffmann J, Wiesen P. Atmos. Chem. Phys., 2005, 5: 77-83
[56] Chughtai A R, Brooks M E, Smith D M. J. Geophys. Res., 1996, 101(D14): 19505-19514
[57] Lammel G, Cape J N. Chem. Soc. Rev., 1996, 25(5): 361-369
[58] Azambre B, Collura S, Trichard J M, Weber J V. Appl. Surf. Sci., 2006, 253: 2296-2303
[59] Kleffmann J, Kurtenbach R, Lorzer J, Wiesen P, Kalthoff N, Vogel B, Vogel H. Atmos. Environ., 2003, 37: 2949-2955
[60] George C, Strekowski R S, Kleffmann J, Stemmler K, Ammann M. Faraday Discuss., 2005, 130: 195-210
[61] Su H, Cheng Y F, Shao M, Gao D F, Yu Z Y, Zeng L M, Slanina J, Zhang Y H, Wiedensohler A. J. Geophys. Res., 2008, 113: D14312. DOI: 10.1029/2007JD009060

[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[8] 魏晨辉, 付翯云, 瞿晓磊, 朱东强. 溶解态黑碳的环境过程研究[J]. 化学进展, 2017, 29(9): 1042-1052.
[9] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[10] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[11] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[12] 王海潮, 陆克定. 五氧化二氮(N2O5)非均相摄取系数的定量和参数化[J]. 化学进展, 2016, 28(6): 917-933.
[13] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[14] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[15] 杨越, 刘琪英, 蔡炽柳, 谈金, 王铁军, 马隆龙. 木质纤维素催化转化制备DMF和C5/C6烷烃[J]. 化学进展, 2016, 28(2/3): 363-374.
阅读次数
全文


摘要

NO2在黑碳表面的非均相反应