English
新闻公告
More
化学进展 DOI: 10.7536/PC120634 前一篇   后一篇

• 综述与评论 •

石墨烯基铁氧化物磁性材料的制备及在水处理中的吸附性能

周丽, 邓慧萍*, 万俊力, 张瑞金   

  1. 同济大学环境科学与工程学院 上海 200092
  • 收稿日期:2012-06-01 修回日期:2012-09-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 邓慧萍 E-mail:denghuiping@sina.com; joly.zhouli@gmail.com
  • 基金资助:

    教育部培育项目 (No.708034)资助

Synthesis and Adsorption of Graphene-Based Iron Oxide Magnetic Nanocomposites

Zhou Li, Deng Huiping*, Wan Junli, Zhang Ruijin   

  1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • Received:2012-06-01 Revised:2012-09-01 Online:2013-01-24 Published:2012-12-27

石墨烯及其衍生物氧化石墨烯均有良好的物理和化学性质,其巨大的表面积和丰富的官能团使其成为良好的吸附材料。石墨烯基磁性材料则综合了石墨烯的吸附能力和磁性材料易分离的特性,是水处理过程中具有巨大应用潜力的吸附材料。本文在论述了石墨烯、氧化石墨烯及铁氧化物磁性材料对水体中的重金属离子、有机染料及含苯环的芳香类污染物的吸附富集性能的基础上,重点介绍了石墨烯基铁氧化物磁性材料的不同合成方法及复合材料在水处理中去除污染物的能力,探讨了复合材料在水处理中的应用前景。

The novel and unique physical and chemical properties of graphene and graphene oxide, in recent years have attracted more and more attention from scientific and professional communities. Owning to their high surface and abundant functional groups, it is possible for them to be the excellent adsorption materials in water treatment processes. However, they are not easy to separate from water matrix. To overcome the problem, so far, numerous graphene-based iron oxide magnetic nanocomposites have been successfully synthesized in various ways and showed desirable combination of adsorption and easy separation properties. Herein, we briefly introduce adsorption ability of graphene, graphene oxide and iron oxide magnetic materials for heavy metal ions, organic dyes and aromatic pollutants, and then highlight the synthesis methods and adsorption ability of graphene-based iron oxide magnetic nanocomposites. Especially, the potential applications in water treatment of these magnetic composites are discussed. Finally, a prospect for future research developments in this field is proposed. Contents
1 Introduction
2 Adsorption of graphene
3 Adsorption of grapheme oxide and modified graphene oxide
4 Adsorption of magnetic material——iron oxide
5 Synthesis and adsorption of graphene/Fe3O4 magnetic composite material
5.1 Synthesis of graphene/Fe3O4
5.2 Adsorption application of graphene/Fe3O4 in water treatment process
6 Conclusion and outlook

中图分类号: 

()

[1] Boehm H P, Clauss A, Fischer G O, Hofmann U. Z. Anorg. Allg. Chem., 1962, 316: 119-127
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669
[3] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22: 3906-3924
[4] Brodie B C. Philos. T. R. Soc. Lond., 1859, 149: 249-259
[5] Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem. Soc. Rev., 2010, 39: 228-240
[6] Green A A, Hersam M C. J. Phys. Chem. Lett., 2009, 1: 544-549
[7] Shao G L, Lu Y G, Wu F F, Yang C L, Zeng F L, Wu Q L. J. Mater. Sci., 2012, 47: 4400-4409
[8] Allen M J, Tung V C, Kaner R B. Chem. Rev., 2010, 110: 132-145
[9] Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W, Tour J M. ACS Nano, 2010, 4: 4806-4814
[10] Hong X, Zou K, DaSilva A M, Ahn C H, Zhu J. Solid State Commun., 2012, 152: 1365-1374
[11] Pei S, Cheng H M. Carbon, 2012, 50: 3210-3228
[12] Prezhdo O V, Kamat P V, Schatz G C. J. Phys. Chem. C, 2011, 115: 3195-3197
[13] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339-1339
[14] Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Small, 2011, 7: 1876-1902
[15] Sun H, Yang Y, Huang Q. Integr. Ferroelectr., 2011, 128: 163-170
[16] Koo H Y, Lee H J, Go H A, Lee Y B, Bae T S, Kim J K, Choi W S. Chem-Eur. J., 2011, 17: 1214-1219
[17] Staudenmaier L. Ber. Dtsch. Chem. Ges., 1898, 31: 1481-1487
[18] Kim J, Cote L J, Kim F, Yuan W, Shull K R, Huang J. J. Am. Chem. Soc., 2010, 132: 8180-8186
[19] Buchsteiner A, Lerf A, Pieper J J. Phys. Chem. B, 2006, 110: 22328-22338
[20] Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nano, 2009, 4: 25-29
[21] 柏嵩(Bai S), 沈小平(Shen X P). 化学进展(Progress in Chemistry), 2010, 22: 2106-2118
[22] Qu J. J. Environ. Sci., 2008, 20: 1-13
[23] Babel S, Kurniawan T A. J. Hazard. Mater., 2003, 97: 219-243
[24] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8: 3498-3502
[25] Dong X, Cheng J, Li J, Wang Y. Anal. Chem., 2010, 82: 6208-6214
[26] Chen J, Zou J, Zeng J, Song X, Ji J, Wang Y, Ha J, Chen X. Anal. Chim. Acta, 2010, 678: 44-49
[27] Wu T, Cai X, Tan S, Li H, Liu J, Yang W. Chem. Eng. J., 2011, 173: 144-149
[28] Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G. J. Chromatogr. A, 2011, 1218: 197-204
[29] Zhang H, Lee H K. J. Chromatogr. A, 2011, 1218: 4509-4516
[30] Zhang H, Lee H K. Anal. Chim. Acta, 2012, 742(SI): 67-73. doi:10.1016/j. aca. 2012.03.016
[31] Wang P, Shi Q, Shi Y, Clark K K, Stucky G D, Keller A A. J. Am. Chem. Soc., 2009, 131: 182-188
[32] Wu Z S, Wang D W, Ren W, Zhao J, Zhou G, Li F, Cheng H M. Adv. Funct. Mater., 2010, 20: 3595-3602
[33] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nano, 2008, 3: 101-105
[34] Balapanuru J, Yang J X, Xiao S, Bao Q L, Jahan M, Polavarapu L, Wei J, Xu Q H, Loh K P. Angew. Chem. Int. Ed., 2010, 49: 6549-6553
[35] Dékány I, Krüger-Grasser R, Weiss A. Colloid Polym. Sci., 1998, 276: 570-576
[36] Seredych M, Bandosz T J. J. Phys. Chem. C, 2007, 111: 15596-15604
[37] Seredych M, Rossin J A, Bandosz T J. Carbon, 2011, 49: 4392-4402
[38] Slabaugh W H, Seiler B C. J. Phys. Chem., 1962, 66: 396-401
[39] Petit C, Bandosz T J. Adv. Funct. Mater., 2010, 20: 111-118
[40] Seredych M, Bandosz T J. J. Colloid Interf. Sci., 2008, 324: 25-35
[41] Aragon F, Cano Ruiz J, Macewan D M C. Nature, 1959, 183: 740-741
[42] Matsuo Y, Niwa T, Sugie Y. Carbon, 1999, 37: 897-901
[43] Matsuo Y, Miyabe T, Fukutsuka T, Sugie Y. Carbon, 2007, 45: 1005-1012
[44] Xu C, Wang X, Yang L, Wu Y. J. Solid State Chem., 2009, 182: 2486-2490
[45] Yang S T, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A. J. Colloid Interf. Sci., 2010, 351: 122-127
[46] Yang S T, Chen S, Chang Y, Cao A, Liu Y, Wang H. J. Colloid Interf. Sci., 2011, 359: 24-29
[47] Zhao M, Liu P. Desalination, 2009, 249: 331-336
[48] Ramesha G K, Kumara A V, Muralidhara H B, Sampath S. J. Colloid Interf. Sci., 2011, 361: 270-277
[49] Sun L, Yu H W, Fugetsu B. J. Hazard. Mater., 2012, 203: 101-110
[50] Hartono T, Wang S, Ma Q, Zhu Z. J. Colloid Interf. Sci., 2009, 333: 114-119
[51] Gao W, Majumder M, Alemany L B, Narayanan T N, Ibarra M A, Pradhan B K, Ajayan P M. ACS Appl. Mater. Interfaces, 2011, 3: 1821-1826
[52] Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W. Adv. Mater., 2011, 23: 3959-3963
[53] Zhao G, Li J, Wang X. Chem. Eng. J., 2011, 173: 185-190
[54] Luo Y B, Cheng J S, Ma Q, Feng Y Q, Li J H. Anal. Methods, 2011, 3: 92-98
[55] Hua M, Zhang S J, Pan B C, Zhang W M, Lv L, Zhang Q X. J. Hazard. Mater., 2012, 211: 317-331
[56] Hu J, Chen G, Lo I M C. Water Res., 2005, 39: 4528-4536
[57] Hu J, Lo I M C, Chen G. Sep. Purif. Technol., 2007, 56: 249-256
[58] Shen Y F, Tang J, Nie Z H, Wang Y D, Ren Y, Zuo L. Sep. Purif. Technol., 2009, 68: 312-319
[59] Khodabakhshi A, Amin M M, Mozaffari M. Iran. J. Environ. Healt., 2011, 8: 189-200
[60] Uheida A, Iglesias M, Fontàs C, Hidalgo M, Salvadó V, Zhang Y, Muhammed M. J. Colloid Interf. Sci., 2006, 301: 402-408
[61] Chen L, Xu Z, Dai H, Zhang S. J. Alloy. Compd., 2010, 497: 221-227
[62] Hu J, Shao D, Chen C, Sheng G, Li J, Wang X, Nagatsu M. J. Phys. Chem. B, 2010, 114: 6779-6785
[63] Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L, Fan Z. Electrochim. Acta, 2010, 55: 6973-6978
[64] Ai L H, Zhang C Y, Chen Z L. J. Hazard. Mater., 2011, 192: 1515-1524
[65] 于文广(Yu W G), 张同来(Zhang T L), 张建国(Zhang J G), 郭金玉(Guo J Y), 吴瑞凤(Wu R F). 化学进展(Progress in Chemistry), 2007, 19: 884-892
[66] 季俊红(Ji J H), 季生福(Ji F S), 杨伟(Yang W), 李成岳(Li C Y). 化学进展(Progress in Chemistry), 2010, 22: 1566-1574
[67] He F, Fan J, Ma D, Zhang L, Leung C, Chan H L. Carbon, 2010, 48: 3139-3144
[68] 张燚(Zhang Y), 陈彪(Chen B), 杨祖培(Yang Z P), 张智军(Zhang Z J). 物理化学学报(Acta Physico-Chimica Sinica), 2011, 27: 1261-1266
[69] Zhang Y, Chen B, Zhang L, Huang J, Chen F, Yang Z, Yao J, Zhang Z. Nanoscale, 2011, 3: 1446-1450
[70] Li Y, Chu J, Qi J, Li X. Appl. Surf. Sci., 2011, 257: 6059-6062
[71] Xie G Q, Xi P X, Liu H Y, Chen F J, Huang L, Shi Y J, Hou F P, Zeng Z Z, Shao C W, Wang J. J. Mater. Chem., 2012, 22: 1033-1039
[72] Zhan Y, Yang X, Meng F, Wei J, Zhao R, Liu X. J. Colloid Interf. Sci., 2011, 363: 98-104
[73] Zhan Y, Meng F, Yang X, Liu X. Colloid Surface A, 2011, 390: 112-119
[74] Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. J. Mater. Chem., 2009, 19: 2710-2714
[75] Kassaee M Z, Motamedi E, Majdi M. Chem. Eng. J., 2011, 172: 540-549
[76] Wu Q, Zhao G, Feng C, Wang C, Wang Z. J. Chromatogr. A, 2011, 1218: 7936-7942
[77] He H, Gao C. ACS Appl. Mater. Interfaces, 2010, 2: 3201-3210
[78] Sun H M, Cao L Y, Lu L H. Nano Res., 2011, 4: 550-562
[79] Su J, Cao M, Ren L, Hu C. J. Phys. Chem. C, 2011, 115: 14469-14477
[80] Cong H P, He J J, Lu Y, Yu S H. Small, 2010, 6: 169-173
[81] Shen J, Hu Y, Shi M, Li N, Ma H, Ye M. J. Phys. Chem. C, 2010, 114: 1498-1503
[82] Zhu J H, Wei S Y, Gu H B, Rapole S B, Wang Q, Luo Z P, Haldolaarachchige N, Young D P, Guo Z H. Environ. Sci. Technol., 2012, 46: 977-985
[83] Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T. J. Mater. Chem., 2010, 20: 5538-5543
[84] Chandra V, Park J, Chun Y, Lee J W, Hwang I C, Kim K S. ACS Nano, 2010, 4: 3979-3986
[85] Liang J, Xu Y, Sui D, Zhang L, Huang Y, Ma Y, Li F, Chen Y. J. Phys. Chem. C, 2010, 114: 17465-17471
[86] Wang H, Robinson J T, Li X, Dai H. J. Am. Chem. Soc., 2009, 131: 9910-9911
[87] Dubin S, Gilje S, Wang K, Tung V C, Cha K, Hall A S, Farrar J, Varshneya R, Yang Y, Kaner R B. ACS Nano, 2010, 4: 3845-3852
[88] Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Angew. Chem. Ger. Ed., 2005, 117: 2842-2845
[89] 付佳(Fu J). 西安建筑科技大学硕士论文(Master Dissertation of Xi'an University of Architecture and Technology), 2007
[90] Geng Z G, Lin Y, Yu X X, Shen Q H, Ma L, Li Z Y, Pan N, Wang X P. J. Mater. Chem., 2012, 22: 3527-3535
[91] Luo Y B, Shi Z G, Gao Q A, Feng Y Q. J. Chromatogr. A, 2011, 1218: 1353-1358
[92] Zhao G Y, Song S J, Wang C, Wu Q H, Wang Z. Anal. Chim. Acta, 2011, 708: 155-159
[93] Wu Q, Zhao G, Feng C, Wang C, Wang Z. J. Chromatogr. A, 2011, 1218: 7936-7942
[94] Wu Q, Liu M, Ma X, Wang W, Wang C, Zang X, Wang Z. Microchimica Acta, 2012, 177: 23-30
[95] Yao Y J, Miao S D, Liu S Z, Ma L P, Sun H Q, Wang S B. Chem. Eng. J., 2012, 184: 326-332
[96] Wang C, Feng C, Gao Y, Ma X, Wu Q, Wang Z. Chem. Eng. J., 2011, 173: 92-97
[97] Afkhami A, Moosavi R. J. Hazard. Mater., 2010, 174: 398-403
[98] Wang W L, Xu J, Sun Z, Zhang X, Lu Y, Lai Y H. Macromolecules, 2006, 39: 7277-7285
[99] Qi X, Pu K Y, Zhou X, Li H, Liu B, Boey F, Huang W, Zhang H. Small, 2010, 6: 663-669

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[6] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[7] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[10] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[11] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[12] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[13] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.