English
新闻公告
More
化学进展 DOI: 10.7536/PC120632 前一篇   后一篇

• 综述与评论 •

紫精类化合物分子聚集体材料的界面组装

钱东金*, 付艳荣   

  1. 复旦大学化学系 上海 200433
  • 收稿日期:2012-06-01 修回日期:2012-08-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 钱东金 E-mail:djqian@fudan.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21073044)、教育部长江学者和创新团队发展计划项目(No.IRT1117)资助

Interfacial Self-Assembly of Viologen-Functionalized Ultrathin Films and Molecular Aggregates

Qian Dongjin*, Fu Yanrong   

  1. Department of Chemistry, Fudan University, Shanghai 200433, China
  • Received:2012-06-01 Revised:2012-08-01 Online:2013-01-24 Published:2012-12-27

紫精类化合物具有良好的电化学活性,并且在发生氧化还原反应时伴有颜色的变化,在膜修饰电极、电致变色材料和分子器件的研制等方面受到广泛的关注。紫精中的烷基链非常易于进行化学修饰,因而比较适合于通过自下而上的分子自组装技术制备多功能的分子和纳米材料。本文综述了利用Langmuir-Blodgett法、自组装法和层层组装法制备紫精分子聚集体材料的研究进展,并讨论了分子聚集体薄膜中紫精的结构、电致变色、电化学氧化还原特性及其在研制超分子器件方面的应用。

Viologens are a group of electroactive organic electrolytes and generally change from colorless to blue or violet after the first reductive reaction, thus they have attracted much attention in the fields of chemically modified electrodes, electrochromic display and supramolecular devices. The alkyl substituents in the viologens are easily functionalized (oxosilane or thiol), resulting in the as-prepared viologens suitable for potential candidates to construct well-defined thin films, multilayers or molecular aggregates by the bottom-up techniques, such as the Langmuir-Blodgett (LB) films, self-assembled monolayers (SAMs) and layer-by-layer (LBL) assembly. If the alkylated substituents contain a thiol or silane substituent, the viologens produced can form SAMs on the solid surfaces, while if they are long alkyl chains, the amphiphilic viologens can form stable insoluble monolayers at the air-water interface and be deposited on the substrate surfaces to form the LB films. The poly(viologen) derivatives can form LBL multilayers with negatively charged polyelectrolytes or nanostructural materials including carbon nanotubes. This paper reviews recent developments in the design and assembly of viologen-functionalized supramolecular and nanoscale materials by the molecular assembling methods. The optical and electrochemical properties of viologens in the molecular assemblies are discussed together with their potential applications as electron mediators for the electron donors, light-harvesting units and proteins. Contents
1 Introduction
2 Synthesis of viologens
2.1 Viologen organics
2.2 Poly(viologen) derivatives
3 Interfacial assembly of viologen-functinalized ultrathin films and aggregates
3.1 Langmuir-Blodgett films of amphiphilic viologens
3.2 Self-assembled monolayers of viologens
3.3 Layer-by-layer assembly of poly(viologen) derivatives
4 Conclusion and remarks

中图分类号: 

()

[1] Rosseinsky D R, Mortimer R J. Adv. Mater., 2001, 13(11): 783-793
[2] 曹良成(Cao L C), 王跃川(Wang Y C). 化学进展 (Progress in Chemistry), 2008, 20(9): 1354-1360
[3] Bird C L, Kuhn A T. Chem. Soc. Rev., 1981, 10(1): 49-82
[4] Shin S R, Lee C K, Kim S I, So I, Spinks G M, Wallace G G, Kim S J. Langmuir, 2008, 24(7): 3562-3565
[5] Mortimer R J, Dyer A L, Reynolds J R. Displays, 2006, 27(1): 2-18
[6] Sandanayakaa A S D, Ito O. J. Porphyrins Phthalocyanines, 2009, 13(10): 1017-1033
[7] Asakura N, Hiraishi T, Kamachi T, Okura I. J. Mol. Catal. A-Chem., 2001;172(1/2): 1-7
[8] Amao Y, Hirakawa T. Int. J. Hydrogen Energ., 2010, 35(13): 6624-6628
[9] De Long H C, Buttry D A. Langmuir, 1990, 6(7): 1319-1322
[10] Yonemoto E H, Riley R L, Kim Y I, Atherton S J, Schmehl R H, Mallouk T E. J. Am. Chem. Soc., 1992, 114(21): 8081-8087
[11] Nishijima T, Nagamura T, Matsuo T. J. Polym. Sci.: Polym. Lett. Ed., 1981, 19(2): 65-73
[12] Cheng K C, Chen P Y. Electroanalysis, 2008, 20(2): 207-210
[13] Matsuo T, Sakamoto T, Takuma K, Sakura K, Ohsako T. J. Phys. Chem., 1981, 85(10): 1277-1279
[14] Liu A, Han S, Che H, Hua L. Langmuir, 2010, 26(5): 3555-3561
[15] Wassel R A, Fuierer R R, Kim N, Gorman C B. Nano Lett., 2003, 3(11): 1617-1620
[16] Moon K, Kaifer A E. Org. Lett., 2004, 6(2): 185-188
[17] Ong W, Kaifer A E. J. Org. Chem., 2004, 69(4): 1383-1385
[18] Ong W, Grindstaff J, Sobransingh D, Toba R, Quintela J M, Peinador C, Kaifer A E. J. Am. Chem. Soc., 2005, 127(10): 3353-3361
[19] Cea P, Lafuente C, Urieta J S, López M C, Royo F M. Langmuir, 1998, 14(25): 7306-7312
[20] Martín S, Cea P, Lafuente C, Royo F M, López Ma C. Surface Science, 2004, 563(1/3): 27-40
[21] Martín S, Villares A, Haro M, López M C, Cea P. J. Electroanal. Chem., 2005, 578(2): 203-211
[22] Qian D J, Nakamura C, Miyake J. Thin Solid Films, 2000, 374(1): 125-133
[23] Fernández A, Martín M, Ruiz J, Muñoz E, Camacho L. J. Phys. Chem. B, 1998, 102(35): 6799-6803
[24] Fernandez A J, Ruiz J J, Camacho L, Martin M T, Munoz E. J. Phys. Chem. B, 2000, 104(23): 5573-5578
[25] Lozano P, Fernández A, Ruiz J, Camacho L, Martín M, Muñoz E. J. Phys. Chem. B, 2002, 106(25): 6507-6514
[26] Qian D J, Nakamura C, Miyake J. Colloids Surf. A: Physicochem Eng. Aspects., 2000, 175(1/2): 93-98
[27] Zhang S S, Wang H L, Chen M, Qian D J. Colloids Surf. A: Physicochem. Eng. Aspects, 2011, 384(1/3): 561-569
[28] Fu Y R, Zhang S S, Chen M, Qian D J. Thin Solid Films, 2012, 520(23): 6994-7001
[29] Qian D J, Nakamura C, Zorin N, Miyake J. Colloids Surf. A: Physicochem. Eng. Aspects, 2002, 198: 663-669
[30] Tang X, Schneider T W, Walker J W, Buttry D A. Langmuir, 1996, 12(24): 5921-5933
[31] John S A, Kasahara H, Okajima T, Tokuda K, Ohsaka T. J. Electroanal. Chem., 1997, 436(1/2): 267-270
[32] John S A, Okajima T, Ohsaka T. J. Electroanal. Chem., 1999, 466(1): 67-74
[33] John S A, Kitamura F, Tokuda K, Ohsaka T. Electrochim. Acta, 2000, 45(24): 4041-4048
[34] John S A, Ohsaka T. J. Electroanal. Chem., 1999, 477(1): 52-61
[35] Nakamura N, Huang H X, Qian D J, Miyake J. Langmuir, 2002, 18(15): 5804-5809
[36] Li J, Yan J, Deng Q, Cheng G, Dong S. Electrochim. Acta, 1997, 42(6): 961-967
[37] Kafi A K M, Lee D Y, Park S H, Kwon Y S. Microchem. J., 2007, 85(2): 308-313
[38] Lee N S, Shin H K, Qian D J, Kwon Y S. Thin Solid Films, 2007, 515(12): 5163-5166
[39] Lee N S, Choi W S, Shin H K, Qian D J, Kwon Y S. Ultramicroscopy, 2008, 108(10): 1101-1105
[40] Bagrets A, Arnold A, Evers F. J. Am. Chem. Soc., 2008, 130(28): 9013-9018
[41] Lee N S, Shin H K, Kwon Y S, Lee B J. Ultramicroscopy, 2010, 110(6): 650-654
[42] Nitahara S, Terasaki N, Akiyama T, Yamada S. Thin Solid Films, 2006, 499(1/2): 354-358
[43] Masuda T, Shimazu K, Uosaki K. J. Phys. Chem. C, 2008, 112(29): 10923-10930
[44] Oo L, Kitamura F. J. Electroanal. Chem., 2008, 619/620: 187-192
[45] Hyung K H, Noh J, Lee W, Han S H. J. Phys. Chem. C, 2008, 112(46): 18178-18182
[46] Asaftei S, Rosemeyer H, Walder L. Langmuir, 2008, 24(11): 5641-5643
[47] Qian D J, Nakamura C, Noda K, Zorin N A, Miyake J. Appl. Biochem. Biotech., 2000, 84/86: 409-418
[48] Zhang X, Chen H, Zhang H Y. Chem. Commun., 2007, (14): 1395-1405
[49] Wan P B, Eric H H, Zhang X. Prog. Chem., 2012, 24(1): 1-7
[50] Laurent D, Schlenoff J B. Langmuir, 1997, 13(6): 1552-1557
[51] Li L S, Li A D Q. J. Phys. Chem. B, 2001, 105(41): 10022-10028
[52] Zacharia N S, De Longchamp D M, Modestino M, Hammond P T. Macromolecules, 2007, 40(5): 1598-1603
[53] Huang H X, Qian D J, Nakamura N, Nakamura C, Wakayama T, Miyake J. Electrochim. Acta, 2004, 49(9/10): 1491-1498
[54] Chen G P, Wang X, Liu A R, Qian D J. Mat. Sci. Eng. C-Bio. S., 2009, 29(3): 925-929
[55] Wang X, Huang H X, Liu A R, Liu B, Wakayama T, Nakamura C, Miyake J, Qian D J. Carbon, 2006, 44(11): 2115-2121
[56] De Longchamp D M, Kastantin M, Hammond P T. Chem. Mater., 2003, 15(8): 1575-1586
[57] Jain V, Khiterer M, Montazami R, Yochum H M, Shea K J, Heflin J R. ACS Appl. Mater. Interfaces., 2009, 1(1): 83-89
[58] Kaschak D M, John T, Waraksa C C, Saupe G B, Usami H, Mallouk T E. J. Am. Chem. Soc., 1999, 121(14): 3435-3445
[59] Abdelrazzaq F B, Kwong R C, Thompson M E. J. Am. Chem. Soc., 2002, 124(17): 4796-4803
[60] Boubbou K H, Ghaddar T H. Langmuir, 2005, 21(19): 8844-8851
[61] Saab M A, Abdel-Malak R, Wishart J F, Ghaddar T H. Langmuir, 2007, 23(21): 10807-10815
[62] Liu J, Chen M, Qian D J. Langmuir, 2012, 28(25): 9496- 9505

[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[3] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[4] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[5] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[6] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[7] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[8] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[9] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[10] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[11] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[12] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[13] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[14] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[15] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.