English
新闻公告
More
化学进展 DOI: 10.7536/PC120622 前一篇   

• 综述与评论 •

人工纳米材料与植物的相互作用: 植物毒性、吸收和传输

吕继涛, 张淑贞*   

  1. 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085
  • 收稿日期:2012-06-01 修回日期:2012-08-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 张淑贞 E-mail:szzhang@rcees.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.21277154,41023005)和国家重点基础研究发展计划(973)项目(No.2011CB936001)资助

Interactions Between Manufactured Nanomaterials and Plants: Phytotoxicity, Uptake and Translocation

Lv Jitao, Zhang Shuzhen*   

  1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received:2012-06-01 Revised:2012-08-01 Online:2013-01-24 Published:2012-12-27

近十几年来纳米科技取得了突飞猛进的发展,人工纳米材料的应用日益广泛,势必导致大量纳米材料进入生态环境中,因此纳米材料可能带来的环境污染和生态效应也受到了高度关注。越来越多的研究表明,纳米材料对微生物、水生和陆生动物和植物都具有一定的毒性效应。植物是生态系统的重要组成部分,一方面纳米材料可能影响植物的发育与生长;另一方面,植物的代谢活动会影响纳米材料在环境中的迁移转化行为及其在食物网中的传递。但是,目前关于纳米材料与植物相互作用的研究还十分匮乏,多数研究只局限于相互作用导致的表观现象,例如:毒性的研究多关注于纳米材料对植物或植物细胞的表观毒性效应,缺乏对致毒机制的探讨;纳米材料的植物吸收和传输研究也仅停留在现象观察阶段,缺乏对吸收与传输机理的深入研究。而且很多研究结论还存在较大的争议,因此非常有必要对相关的研究进展与结论做全面梳理。本文综述了近年来关于纳米材料与植物相互作用的研究,从植株到植物细胞水平讨论了不同纳米材料对植物的毒性效应以及纳米材料的植物吸收和传输过程。

With the rapid development and wide application of nanotechnology in recent years, increasing amount of manufactured nanomaterials will inevitably enter the environment. The presence of nanomaterials in the environment can have negative effects on both environment and human health, which has been attracted much attention. Many studies have suggested the potential toxicity of manufactured nanomaterials to bacteria and aquatic and terrestrial animals and plants. Plants comprise a very important living component of terrestrial ecosystems. On one hand, nanomaterials will influence plant growth and development. On the other hand, plant metabolic activities will affect transformation and fate of nanomaterials in the environment as well as their transportation in food chain. However, up to now studies about the interactions between nanomaterials and plants have been largely ignored, and most of the publications are limited to explanations of phenomena observed. For example, the available studies on nano-phytotoxicity have focused mainly on toxicity symptoms of plants or plant cells, and failed to elucidate the mechanisms responsible for the phytotoxicity of nanomaterials, as well as the uptake, translocation and accumulations of nanomaterials by plants. Moreover, different or even opposite conclusions have been drawn from the researches. Therefore, it is necessary to have a systematic review of the available researches in this field. Here we present a comprehensive review of the studies about the interaction of nanomaterials and plants including the phytotoxicity of nanomaterials and the uptake and translocation of nanomaterials by plants at the whole plant and cellular levels. Contents
1 Introduction
2 Interactions of nanomaterials and plants
3 Effects of nanomaterials on plant growth
3.1 Carbon nanomaterials
3.2 Metal (oxide) nanomaterials
4 Uptake and translocation of nanomaterials by plants
4.1 Negative opinions on plant uptake of nano-materials
4.2 Positive opinions on plant uptake of nano-materials
5 Conclusions and perspectives

中图分类号: 

()

[1] 白春礼(Bai C L). 科学通报(Chinese Science Bulletin), 2001, 46: 89-92
[2] Masciangioli T, Zhang W X. Environ. Sci. Technol., 2003, 37: 102a-108a
[3] Nel A, Xia T, Madler L, Li N. Science, 2006, 311: 622-627
[4] Bai C L. Science, 2005, 309: 61-63
[5] Wiesner M R, Lowry G V, Alvarez P, Dionysiou D, Biswas P. Environ. Sci. Technol., 2006, 40: 4336-4345
[6] Robichaud C O, Tanzil D, Weilenmann U, Wiesner M R. Environ. Sci. Technol., 2005, 39: 8985-8994
[7] Service R F. Science, 2003, 300: 243-243
[8] Brumfiel G. Nature, 2003, 424: 246-248
[9] Colvin V L. Nat. Biotechnol., 2003, 21: 1166-1170
[10] Owen R, Handy R. Environ. Sci. Technol., 2007, 41: 5582-5588
[11] Lowry G V, Casman E A. Nato. Sci. Peace. Secur., 2009, 125-137
[12] Klaine S J, Alvarez P J J, Batley G E, Fernandes T F, Handy R D, Lyon D Y, Mahendra S, McLaughlin M J, Lead J R. Environ. Toxicol. Chem., 2008, 27: 1825-1851
[13] Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quigg A, Santschi P H, Sigg L. Ecotoxicology, 2008, 17: 372-386
[14] Singh N, Manshian B, Jenkins G J S, Griffiths S M, Williams P M, Maffeis T G G, Wright C J, Doak S H. Biomaterials, 2009, 30: 3891-3914
[15] Nair R, Varghese S H, Nair B G, Maekawa T, Yoshida Y, Kumar D S. Plant Sci., 2010, 179: 154-163
[16] Ma X M, Geiser-Lee J, Deng Y, Kolmakov A. Sci. Total Environ., 2010, 408: 3053-3061
[17] Monica R C, Cremonini R. Caryologia, 2009, 62: 161-165
[18] Becker L. Science, 1994, 265: 1644-1644
[19] Murr L E, Esquivel E V, Bang J J, de la Rosa G, Gardea-Torresdey J L. Water Res., 2004, 38: 4282-4296
[20] Nowack B, Bucheli T D. Environ. Pollut., 2007, 150: 5-22
[21] Hochella M F. Geochim. Cosmochim. Acta, 2002, 66: 735-743
[22] Rico C M, Majumdar S, Duarte-Gardea M, Peralta-Videa J R, Gardea-Torresdey J L. J. Agr. Food Chem., 2011, 59: 3485-3498
[23] Judy J D, Unrine J M, Bertsch P M. Environ. Sci. Technol., 2011, 45: 776-781
[24] Holbrook R D, Murphy K E, Morrow J B, Cole K D. Nat. Nanotechnol., 2008, 3: 352-355
[25] Gardea-Torresdey J L, Gomez E, Peralta-Videa J R, Parsons J G, Troiani H, Jose-Yacaman M. Langmuir, 2003, 19: 1357-1361
[26] Gardea-Torresdey J L, Parsons J G, Gomez E, Peralta-Videa J, Troiani H E, Santiago P, Yacaman M J. Nano Lett., 2002, 2: 397-401
[27] Manceau A, Nagy K L, Marcus M A, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T. Environ. Sci. Technol., 2008, 42: 1766-1772
[28] Haverkamp R G, Marshall A T. J. Nanopart. Res., 2009, 11: 1453-1463
[29] Mohanpuria P, Rana N K, Yadav S K. J Nanopart. Res., 2008, 10: 507-517
[30] Qu J, Yuan X, Wang X H, Shao P. Environ. Pollut., 2011, 159: 1783-1788
[31] USEPA 1996-Ecological effects test guidelines (OPPTS 850.4200) Seed Germination Root Elongation Toxicity Test. http: //www. epa. gov
[32] Khodakovskaya M V. P. Natl. Acad. Sci. USA, 2011, 108: 1028-1033
[33] Lin D H, Xing B S. Environ. Pollut., 2007, 150: 243-250
[34] Stampoulis D, Sinha S K, White J C. Environ. Sci. Technol., 2009, 43: 9473-9479
[35] Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z R, Watanabe F, Biris A S. ACS Nano, 2009, 3: 3221-3227
[36] Canas J E, Long M Q, Nations S, Vadan R, Dai L, Luo M X, Ambikapathi R, Lee E H, Olszyk D. Environ. Toxicol. Chem., 2008, 27: 1922-1931
[37] Liu Q L, Zhao Y Y, Wan Y L, Zheng J P, Zhang X J, Wang C R, Fang X H, Lin J X. ACS Nano, 2010, 4: 5743-5748
[38] Lin S J, Reppert J, Hu Q, Hudson J S, Reid M L, Ratnikova T A, Rao A M, Luo H, Ke P C. Small, 2009, 5: 1128-1132
[39] Lin C, Fugetsu B, Su Y, Watari F. J. Hazard. Mater., 2009, 170: 578-583
[40] Wei L P, Thakkar M, Chen Y H, Ntim S A, Mitra S, Zhang X Y. Aquat. Toxicol., 2010, 100: 194-201
[41] Tan X M, Lin C, Fugetsu B. Carbon, 2009, 47: 3479-3487
[42] Tan X M, Fugetsu B. J. Biomed. Nanotechnol., 2007, 3: 285-288
[43] Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A. J. Hazard. Mater., 2011, 197: 327-336
[44] Shen C X, Zhang Q F, Li J A, Bi F C, Yao N. Am. J. Bot., 2010, 97: 1602-1609
[45] Khodakovskaya M V, Silva K D, Biris A S, Dervishi E, Villagarcia H. ACS Nano, 2012, 6: 2128-2135
[46] Ma Y H, Kuang L L, He X, Bai W, Ding Y Y, Zhang Z Y, Zhao Y L, Chai Z F. Chemosphere, 2010, 78: 273-279
[47] Lopez-Moreno M L, de la Rosa G, Hernandez-Viezcas J A, Castillo-Michel H, Botez C E, Peralta-Videa J R, Gardea-Torresdey J L. Environ. Sci. Technol., 2010, 44: 7315-7320
[48] Gao F Q, Liu C, Qu C X, Zheng L, Yang F, Su M G, Hong F H. Biometals, 2008, 21: 211-217
[49] Yang F, Liu C, Gao F Q, Su M Y, Wu X, Zheng L, Hong F S, Yang P. Biol. Trace Elem. Res., 2007, 119: 77-88
[50] Lei Z, Su M Y, Xiao W, Chao L, Qu C X, Liang C, Hao H, Liu X Q, Hong F S. Biol. Trace Elem. Res., 2008, 121: 69-79
[51] Ghosh M, Bandyopadhyay M, Mukherjee A. Chemosphere, 2010, 81: 1253-1262
[52] Wang S, Kurepa J, Smalle J A. Plant Cell Environ., 2011, 34: 811-820
[53] Zhou J C, Wang X H, Xue M, Xu Z, Hamasaki T, Yang Y, Wang K, Dunn B. Mat. Sci. Eng. C Mater., 2010, 30: 20-26
[54] Franklin N M, Rogers N J, Apte S C, Batley G E, Gadd G E, Casey P S. Environ. Sci. Technol., 2007, 41: 8484-8490
[55] Li M H, Pokhrel S, Jin X, Madler L, Damoiseaux R, Hoek E M V. Environ. Sci. Technol., 2011, 45: 755-761
[56] Li M, Zhu L Z, Lin D H. Environ. Sci. Technol., 2011, 45: 1977-1983
[57] Miller R J, Lenihan H S, Muller E B, Tseng N, Hanna S K, Keller A A. Environ. Sci. Technol., 2010, 44: 7329-7334
[58] Lee C W, Mahendra S, Zodrow K, Li D, Tsai Y C, Braam J, Alvarez P J J. Environ. Toxicol. Chem., 2010, 29: 669-675
[59] Yang L, Watts D J. Toxicol. Lett., 2005, 158: 122-132
[60] Murashov V. Toxicol. Lett., 2006, 164: 185-187
[61] Zhang P, Ma Y H, Zhang Z Y, He X, Guo Z, Tai R Z, Ding Y Y, Zhao Y L, Chai Z F. Environ. Sci. Technol., 2012, 46: 1834-1841
[62] Yin L Y, Cheng Y W, Espinasse B, Colman B P, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt E S. Environ. Sci. Technol., 2011, 45: 2360-2367
[63] Parsons J G, Lopez M L, Gonzalez C M, Peralta-Videa J R, Gardea-Torresdey J L. Environ. Toxicol. Chem., 2010, 29: 1146-1154
[64] Asli S, Neumann P M. Plant Cell Environ., 2009, 32: 577-584
[65] Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark W J, Günther D, Limbach L K. Environ. Sci. Technol., 2010, 44: 8718-8723
[66] 吕继涛(LV J T), 罗磊(Luo L), 张淑贞(Zhang S Z), 杨科(Yang K). 环境化学(Environmental Chemistry), 2011, 30: 903-907
[67] Wild E. Environ. Sci. Technol., 2007, 41: 5934-5938
[68] Lin D H, Xing B S. Environ. Sci. Technol., 2008, 42: 5580-5585
[69] Lee W M, An Y J, Yoon H, Kweon H S. Environ. Toxicol. Chem., 2008, 27: 1915-1921
[70] Liu Q L, Chen B, Wang Q L, Shi X L, Xiao Z Y, Lin J X, Fang X H. Nano Lett., 2009, 9: 1007-1010
[71] Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic B M, Lu J J, Wanzer M B, Woloschak G E, Smalle J A. Nano Lett., 2010, 10: 2296-2302
[72] Zhang Z Y, He X, Zhang H F, Ma Y H, Zhang P, Ding Y Y, Zhao Y L. Metallomics, 2011, 3: 816-822
[73] Chen R, Ratnikova T A, Stone M B, Lin S, Lard M, Huang G, Hudson J S, Ke P C. Small, 2010, 6: 612-617
[74] Sabo-Attwood T, Unrine J M, Stone J W, Murphy C J, Ghoshroy S, Blom D, Bertsch P M, Newman L A. Nanotoxicology, 2012, 6: 353-360
[75] Zhu H, Han J, Xiao J Q, Jin Y. J. Environ. Monitor., 2008, 10: 713-717
[76] Hischemoller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M. J. Biomed. Nanotechnol., 2009, 5: 278-284
[77] Corredor E, Testillano P S, Coronado M J, Gonzalez-Melendi P, Fernandez-Pacheco R, Marquina C, Ibarra M R, de la Fuente J M, Rubiales D, Perez-De-Luque A, Risueno M C. BMC. Plant Biol., 2009, 9: art. no. 45
[78] Wang Z Y, Xie X Y, Zhao J, Liu X Y, Feng W Q, White J C, Xing B S. Environ. Sci. Technol., 2012, 46: 4434-4441
[79] Lynch I, Salvati A, Dawson K A. Nat. Nanotechnol., 2009, 4: 546-547
[80] Glenn J B, White S A, Klaine S J. Environ. Toxicol. Chem., 2012, 31: 194-201

[1] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[2] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[3] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[6] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[7] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[8] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[9] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[10] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[11] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[12] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[13] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[14] 傅力, 张怀伟, 叶玮婷, 叶辰, 林正得. 固态电分析化学及其植物研究[J]. 化学进展, 2021, 33(8): 1440-1449.
[15] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.