English
新闻公告
More
化学进展 DOI: 10.7536/PC120621 前一篇   后一篇

• 综述与评论 •

全钒液流电池隔膜的制备与性能

汪南方1,2, 刘素琴*2   

  1. 1. 湖南工程学院化学化工学院 湘潭 411104;
    2. 中南大学化学化工学院 长沙 410083
  • 收稿日期:2012-06-01 修回日期:2012-09-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 刘素琴 E-mail:sqliu2003@126.com
  • 基金资助:

    国家自然科学基金项目(No.51072234)和国家重点基础研究发展计划(973)项目(No.2010CB227201)资助

Preparation and Properties of Separation Membranes for Vanadium Redox Flow Battery

Wang Nanfang1,2, Liu Suqin*2   

  1. 1. School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China;
    2. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received:2012-06-01 Revised:2012-09-01 Online:2013-01-24 Published:2012-12-27

全钒液流电池作为一种电化学储能装置在电网调峰、山区供电、电动车充电电源、应急电源等方面具有很广阔的应用前景。隔膜是全钒液流电池的关键组件之一,其结构和性能决定电池的效能。隔膜的离子传导率和钒离子的渗透率分别影响电池的电压效率和电流效率。隔膜的化学稳定性决定电池的长期运行的稳定性和使用寿命。本文根据隔膜的类别不同,分别阐述了含氟离子膜、非氟离子膜及多孔膜的制备与上述性能的关系,并展望了隔膜的发展方向。

All vanadium redox flow battery (VRB) is accepted as a electrochemical energy storage device for the load levelling and peak shaving of the grid, the power supply for remote area, the charging power source for the electric vehicles, and the uninterruptible power supply. As one of the key components in VRB system, the membrane, in the terms of its structures and properties, is responsible for the efficiencies of the VRB. The ion conductivity and vanadium ions permeation of the membrane affect the voltage efficiency and coulombic efficiency of the battery, respectively. The chemical stability of the membrane determines the long-term performance and lifetime of the battery. This review mainly summarizes the preparation and properties of the fluorinated ionic exchange membranes, the non-fluorinated ionic exchange membranes, and the pore membranes. The promising research strategies are outlook. Contents
1 Introduction
2 Fluorinated ionic exchange membranes
2.1 Nafion membranes
2.2 PVDF grafted membranes
2.3 PTFE grafted membranes
3 Non-fluorinated ionic exchange membranes
3.1 Poly (aryl ether)s membranes
3.2 Other membranes
4 Pore separation membranes
5 Conclusion and outlook

中图分类号: 

()

[1] Sum E, Rychcik M, Skyllas-Kazacos M. Journal of Power Sources, 1985, 16(2): 85-95
[2] Sum E, Skyllas-Kazacos M. Journal of Power Sources, 1985, 15(2/3): 179-190
[3] Skyllas-Kazacos M, Rychcik M, Robins R G, Fane A G, Green M A. Journal of the Electrochemical Society, 1986, 133(5): 1057-1058
[4] Skyllas-Kazacos M, Rychick M, Robins R. US 4786567, 1986
[5] Sukkar T, Skyllas-Kazacos M. Journal of Membrane Science, 2003, 222(1/2): 235-247
[6] Mohammadi T, Skyllas-Kazacos M. Journal of Membrane Science, 1995, 107(1/2): 35-45
[7] Hwang G J, Ohya H. Journal of Membrane Science, 1997, 132(1): 55-61
[8] Li X, Zhang H, Mai Z, Zhang H, Vankelecom I. Energy & Environmental Science, 2011, 4: 1147-1160
[9] Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z. ChemSusChem, 2011, 4(10): 1388-1406
[10] 陈振兴 (Chen Z X), 唐新村 (Tang X C). 高分子电池材料(Polymeric Materials for Batteries). 北京:化学工业出版社 (Beijing: Chemical Industry Press), 2006
[11] 文越华 (Wen Y H), 张华民 (Zhang H M), 钱鹏 (Qian P), 衣宝廉 (Yi B L). 电池 (Battery), 2005, 35(6): 414-416
[12] Luo Q T, Zhang H M, Chen J, Qian P, Zhai Y F. Journal of Membrane Science, 2008, 311(1/2): 98-103
[13] Luo Q T, Zhang H M, Chen J, You D J, Sun C X, Zhang Y. Journal of Membrane Science, 2008, 325(2): 553-558
[14] Zeng J, Jiang C P, Wang Y H, Chen J W, Zhu S F, Zhao B J, Wang R. Electrochemistry Communications, 2008, 10(3): 372-375
[15] Schwenzer B, Kim S, Vijayakumar M, Yang Z, Liu J. Journal of Membrane Science, 2011, 372(1/2): 11-19
[16] Xi J Y, Wu Z H, Qiu X P, Chen L Q. Journal of Power Sources, 2007, 166(2): 531-536
[17] 滕祥国 (Teng X G), 赵永涛 (Zhao Y T), 席靖宇 (Xi J Y), 武增华 (Wu Z H), 邱新平 (Qi X P), 陈立泉 (Chen L Q). 化学学报 (Acta Chimica Sinica), 2009, 67(6): 471-476
[18] Teng X, Zhao Y, Xi J, Wu Z, Qiu X, Chen L. Journal of Power Sources, 2009, 189(2): 1240-1246
[19] Teng X, Zhao Y, Xi J, Wu Z, Qiu X, Chen L. Journal of Membrane Science, 2009, 341(1/2): 149-154
[20] Wang N, Peng S, Lu D, Liu S, Liu Y, Huang K. Journal of Solid State Electrochemistry, 2012, 16(4): 1577-1584
[21] 吕正中 (Lv Z Z), 胡嵩麟 (Hu H L), 罗绚丽 (Luo X L), 武增华 (Wu Z H), 陈立泉 (Chen L Q), 邱新平 (Qiu X P). 高等学校化学学报(Chemical Journal of Chinese Universities), 2007, 28(1): 145-148
[22] 龙飞 (Long F), 陈金庆 (Chen J Q), 王保国 (Wang B G). 天津工业大学学报 (Journal of Tianjin Polytechnic University), 2008, 27(4): 9-11
[23] Qiu J Y, Ni H F, Zhai M L, Peng J, Zhou H H, Li J Q, Wei G S. Radiation Physics and Chemistry, 2007, 76(11/12): 1703-1707
[24] Qiu J, Zhang J, Chen J, Peng J, Xu L, Zhai M, Li J, Wei G. Journal of Membrane Science, 2009, 334(1/2): 9-15
[25] Qiu J Y, Li M Y, Ni J F, Zhai M L, Peng J, Xu L, Zhou H H, Li J Q, Wei G S. Journal of Membrane Science, 2007, 297(1/2): 174-180
[26] Robeson L M, Matzner M. US 4380598, 1983
[27] Wang F, Hickner M, Kim Y S, Zawodzinski T A, McGrath J E. Journal of Membrane Science, 2002, 197(1/2): 231-242
[28] Ueda M, Toyota H, Ouchi T, Sugiyama J I, Yonetake K, Masuko T, Teramoto T. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31(4): 853-858
[29] Wang F, Hickner M, Ji Q, Harrison W, Mecham J, Zawodzinski T A, McGrath J E. Macromolecular Symposia, 2001, 175(1): 387-396
[30] Xing P X, Robertson G P, Guiver M D, Mikhailenko S D, Kaliaguine S. Polymer, 2005, 46(10): 3257-3263
[31] Chen D, Wang S, Xiao M, Meng Y. Journal of Power Sources, 2010, 195(7): 2089-2095
[32] Mai Z, Zhang H, Li X, Bi C, Dai H. Journal of Power Sources, 2011, 196(1): 482-487
[33] Gao Y, Robertson G P, Guiver M D, Jian X. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(4): 497-507
[34] Gao Y, Robertson G P, Guiver M D, Jian X, Mikhailenko S D, Wang K, Kaliaguine S. Journal of Membrane Science, 2003, 227(1/2): 39-50
[35] Hwang G J, Ohya H. Journal of Membrane Science, 1998, 149(2): 163-169
[36] Hwang G J, Ohya H. Journal of Membrane Science, 1998, 140(2): 195-203
[37] Bae B, Hoshi T, Miyatake K, Watanabe M. Macromolecules, 2011, 44(10): 3884-3892
[38] Kerres J A. Journal of Membrane Science, 2001, 185(1): 3-27
[39] Xing D, Kerres J. Polymers for Advanced Technologies, 2006, 17(7/8): 591-597
[40] Arnold C Jr, Assink R A. Journal of Membrane Science, 1988, 38(1): 71-83
[41] Kim S, Yan J, Schwenzer B, Zhang J, Li L, Liu J, Yang Z, Hickner M A. Electrochemistry Communications, 2010, 12(11): 1650-1653
[42] Chen D, Wang S, Xiao M, Han D, Meng Y. Polymer, 2011, 52(23): 5312-5319
[43] Chen D, Wang S, Xiao M, Meng Y. Energy & Environmental Science, 2010, 3(5): 622-628
[44] Chen D, Wang S, Xiao M, Meng Y. Energy Conversion and Management, 2010, 51(12): 2816-2824
[45] Kashima G, Ibaraki K. EP 0790658A2, 1997
[46] 张守海 (Zhang S H), 邢东博 (Xing D B), 颜春 (Yan C), 蹇锡高 (Jian X G). 合成化学 (Chinese Journal of Synthetic Chemistry), 2007, 15(B11): 225-225
[47] Jian X G, Yan C, Zhang H M, Zhang S H, Liu C, Zhao P. Chinese Chemical Letters, 2007, 18(10): 1269-1272
[48] Ahmad H, Kamarudin S K, Hasran U A, Daud W R W. International Journal of Hydrogen Energy, 2010, 35(5): 2160-2175
[49] Chen D, Wang S, Xiao M, Han D, Meng Y. Journal of Power Sources, 2010, 195(22): 7701-7708
[50] Wang N, Peng S, Wang H, Li Y, Liu S, Liu Y. Electrochemistry Communications, 2012, 17(0): 30-33
[51] 桑商斌 (Sang S B), 黄可龙 (Huang K L), 石瑞成 (Shi R C), 王小波 (Wang X B). 中南大学学报:自然科学版 (Journal of Central South University(Science and Technology), 2005, 36(6): 1011-1016
[52] Hwang G J, Ohya H. Journal of Membrane Science, 1996, 120(1): 55-67
[53] Mohammadi T, Kazacos M S. Journal of Power Sources, 1996, 63(2): 179-186
[54] Tian B, Yan C W, Wang F H. Journal of Applied Electrochemistry, 2004, 34(12): 1205-1210
[55] 鲁丹(Lu D), 黄可龙 (Huang K L), 刘素琴( Liu S Q), 汪南方(Wang N F). 电源技术(Chinese Journal of Power Sources), 2012, 36(05): 655-657
[56] Huang K L, Li X G, Liu S Q, Tan N, Chen L Q. Renewable Energy, 2008, 33(2): 186-192
[57] 谭宁 (Tan N), 黄可龙 (Huang K L), 刘素琴 (Liu S Q). 电源技术 (Chinese Journal of Power Sources), 2004, 28(12): 775-778
[58] Chieng S C, Kazacos M, Skyllas-Kazacos M. Journal of Power Sources, 1992, 39(1): 11-19
[59] Chieng S C, Kazacos M, Skyllas-Kazacos M. Journal of Membrane Science, 1992, 75(1/2): 81-91
[60] Tian B, Yan C W, Wang F H. Journal of Membrane Science, 2004, 234(1/2): 51-54
[61] Hilal N, Al-Zoubi H, Darwish N A, Mohamma A W, Abu Arabi M. Desalination, 2004, 170(3): 281-308
[62] Zhang H, Zhang H, Li X, Mai Z, Zhang J. Energy & Environmental Science, 2011, 4(5): 1676-1679

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[3] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[4] 陈青柏, 刘雨, 赵津礼, 李鹏飞, 王建友. 基于新型离子交换膜过程的含盐废水零排放技术[J]. 化学进展, 2019, 31(12): 1669-1680.
[5] 吴翠明 肖新乐 崔鹏 徐铜文. 杂化离子膜的制备和应用*[J]. 化学进展, 2010, 22(10): 2003-2013.
[6] 张莉平 袁实 胡峰 常晓峰*. 含Bi(V)半导体化合物及其在多相光催化中的应用[J]. 化学进展, 2010, 22(09): 1729-1734.
[7] 张亚萍 陈艳 周元林 何平. 全钒氧化还原液流电池隔膜*[J]. 化学进展, 2010, 22(0203): 384-387.
[8] 张亚萍 徐铜文 . 荷电膜的膜电位研究进展[J]. 化学进展, 2006, 18(12): 1592-1598.
阅读次数
全文


摘要

全钒液流电池隔膜的制备与性能