English
新闻公告
More
化学进展 DOI: 10.7536/PC120618 前一篇   后一篇

• 综述与评论 •

二氧化硅粒子的表面化学修饰——方法、原理及应用

陈凯玲, 赵蕴慧*, 袁晓燕*   

  1. 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300072
  • 收稿日期:2012-06-01 修回日期:2012-09-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 赵蕴慧, 袁晓燕 E-mail:zhaoyunhui@tju.edu.cn; yuanxy@tju.edu.cn

Chemical Modification of Silica: Method, Mechanism, and Application

Chen Kailing, Zhao Yunhui*, Yuan Xiaoyan*   

  1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
  • Received:2012-06-01 Revised:2012-09-01 Online:2013-01-24 Published:2012-12-27

本文综述了近年来国内外对二氧化硅粒子表面化学修饰的研究成果,主要介绍了偶联剂法、表面接枝法和一步法的反应原理,探讨了各种改性方法的关键问题和优势,重点介绍了表面接枝法,包括以普通自由基聚合、原子转移自由基聚合和可逆加成-断裂链转移自由基聚合为原理的表面聚合生长接枝法和以开环加成、点击化学和酯化反应为原理的偶联接枝法。由于表面接枝法一般需要偶联剂在二氧化硅表面引入官能团,本文亦简要介绍了硅烷偶联剂及其修饰机理和一步法的反应原理。表面修饰的基团或接枝的聚合物赋予二氧化硅粒子新的性能;经表面修饰的二氧化硅粒子,提高了在有机溶剂或有机基体中的分散性,增加了与有机基体的界面相容性,并已广泛应用于新材料的合成。

Silica is one of the most important inorganic materials, and has been drawing a growing number of attentions in the field of organic/inorganic composite materials. In this paper, research progress on methods and mechanisms of chemical modification as well as applications of modified silica particles are reviewed in detail. Mechanisms of coupling method, surface grafting methods (“grafting from” and “grafting onto” included) and one-step method are discussed along with the comments on key points and advantages of these methods. The methods of “grafting from” based on conventional free radical polymerization, atom transfer radical polymerization and reversible addition-fragmentation chain transfer polymerization are discussed, whereas “grafting on” based on ring-opening addition reaction, “click chemistry” and esterification reaction are described. Generally, endowing silica surface with functional groups for further reaction by silane coupling agents is essential, and silane coupling agents and their modification mechanisms are introduced firstly. In addition, one-step method is also discussed here. At the same time, significances of surface modification which are improvement on dispersibility, endowing silica with functionality and improvement on compatibility are summarized. The dispersibility of surface modified silica particles in organic solvents or organic matrix is improved. The modified silica particles are functioned by the groups or polymers which are grafted on their surfaces. The adhesive forces between organic phase and inorganic phase are enhanced since the modified silica particles are dispersed well in the organic matrix. And the modified silica particles are expected applications in fabricating new materials. Contents
1 Introduction
2 Methods and mechanisms of chemical modification
2.1 Coupling method
2.2 Surface grafting method
2.3 One-step method
3 Significance of surface modification
3.1 Improvement on dispersibility
3.2 Endowing silica with functionality
3.3 Improvement on compatibility
3.4 Other significances
4 Conclusions and outlook

中图分类号: 

()

[1] Chen Y Z, Zhang Z P, Yu J, Guo Z X. J. Polym. Sci. Part B: Polym. Phys., 2009, 47(12): 1211-1218
[2] Qu A L, Wen X F, Pi P H, Cheng J, Yang Z R. J. Colloid Interf. Sci., 2008, 317(1): 62-69
[3] Darbandi M, Thomann R, Nann T. Chem. Mater., 2007, 19(7): 1700-1703
[4] Deng Z W, Chen M, Zhou S X, You B, Wu L M. Langmuir, 2006, 22(14): 6403-6407
[5] Brom C R, Anac I, Roskamp R F, Retsch M, Jonas U, Menges B, Preece J A. J. Mater. Chem., 2010, 20(23): 4827-4839
[6] Wang X, Zhao X H, Wang M Z, Shen Z G. Nucl. Instrum. Methods Phys. Res. Sect. B, 2006, 243(2): 320-324
[7] 张玉龙(Zhang Y L), 高树理(Gao S L). 纳米改性剂(Nanometer Modifier for Material). 北京: 国防工业出版社(Beijing: National Defence Industrial Press), 2004. 129-135
[8] Wang Q H, Luo Y Y, Feng C F, Yi Z F, Qiu Q F, Kong L X, Peng Z. J. Nanomater., 2012, ant. no. 782986
[9] Li G L, Xu L Q, Tang X Z, Neoh K J, Kang E T. Macromolecules, 2010, 43(13): 5797-5803
[10] Sun G Y, Chang Y P, Li S H, Li Q Y, Xu R, Gu J M, Wang E B. Dalton Trans., 2009, (23): 4481-4487. DOI: 10.1039/B901133A
[11] 崔新爱(Cui X A). 陕西师范大学硕士学位论文(Master Dissertation of Shaanxi Normal University), 2008. 6-7
[12] 束华东(Shu D H), 李小红(Li X H), 张志军(Zhang Z J). 化学进展(Progress in Chemistry), 2008, 20(10): 1509-1514
[13] 李德亮(Li D L), 王军(Wang J), 常志显(Chang Z X), 张志军(Zhang Z J). 化学进展(Progress in Chemistry), 2008, 20(7/8): 1115-1121
[14] 王刚(Wang G), 颜峰(Yan F), 滕兆刚(Teng Z G), 杨文胜(Yang W S), 李铁津(Li T J). 化学进展(Progress in Chemistry), 2006, 18(2/3): 239-245
[15] Chen M, Wu L M, Zhou S X, You B. Macromolecules, 2004, 37(25): 9616-9619
[16] Chen M, Zhou S X, You B, Wu L M. Macromolecules, 2005, 38(15): 6411-6417
[17] Jin Y, Yang D Y, Kang D Y, Jiang X Y. Langmuir, 2010, 26(2): 1186-1190
[18] Wang Y Z, Fan D Q, He J P, Yang Y L. Colloid Polym. Sci., 2011, 289(17/18): 1885-1894
[19] Li D, Sheng X, Zhao B. J. Am. Chem. Soc., 2005, 127(17): 6248-6256
[20] Choi J H, Hui C M, Pietrasik J, Dong H C, Matyjaszewski K, Bockstaller M R. Soft Matter, 2012, 8(15): 4072-4082
[21] Achilleos D S, Vamvakaki M. Materials, 2010, 3(3): 1981-2026
[22] Durand N, Boutevin B, Silly G, Ameduri B. Macromolecules, 2011, 44(21): 8487-8493
[23] Matyjaszewski K. Prog. Polym. Sci., 2005, 30(8/9): 858-875
[24] Von Werne T, Pattern T E. J. Am. Chem. Soc., 1999, 121(32): 7409-7410
[25] Werne T V, Pattern T E. J. Am. Chem. Soc., 2001, 123(31): 7497-7505
[26] Park J T, Seo J A, Ahn S H, Kim J H, Kang S W. J. Ind. Eng. Chem., 2010, 16 (4): 517-522
[27] 雷海琴(Lei H Q), 曹惠庆(Cao H Q), 朱新宝(Zhu X B). 江苏化工(Jiangsu Chemical Industry), 2008, 36(1): 9-12
[28] 杨友强(Yang Y Q), 孙清清(Sun Q Q), 张灿阳(Zhang C Y), 郭新东(Guo X D), 章莉娟(Zhang L J), 文秀芳(Wen X F). 化学学报(Acta Chimica Sinica), 2012, 70(4): 505-511
[29] Du S X, Zhou G W, Wang X L, Li T D, Xu Y Q, Zhang L. Micro. Nano. Lett., 2011, 6(3): 154-156
[30] Hojjati B, Charpentier P A. Polymer, 2010, 51(23): 5345-5351
[31] Rotzoll R, Vana P. J. Polym. Sci. Part A: Polym. Chem., 2008, 46 (23): 7656-7666
[32] Stenzel M H. Macromol. Rapid Commun., 2009, 30(19): 1603-1624
[33] Ohno K, Ma Y, Huang Y, Mori C, Yahata Y, Tsujii Y, Maschrnmeyer T, Moraes J, Perrier S. Macromolecules, 2011, 44(22): 8944-8953
[34] Liu J L, Zhang L F, Shi S P, Chen S, Zhou N C, Zhang Z B, Cheng Z P, Zhu X L. Langmuir, 2010, 26(18): 14806-14813
[35] Zhou D, Zhu X L, Zhu J, Hu L H, Cheng Z P. J. Appl. Polym. Sci., 2007, 103(2): 982-988
[36] Zhang W T, Lee H R. Surf. Interface Anal., 2010, 42(9): 1495-1498
[37] 邱素艳(Qu S Y), 高森(Gao S), 林振宇(Lin Z Y), 陈国南(Chen G N). 化学进展(Progress in Chemistry), 2011, 23(4): 637-648
[38] Fried D I, Schlossbauer A, Bein T. Micropor. Mesopor. Mat., 2012, 147(1): 5-9
[39] Kar M, Vijayakumar P S, Prasad B L V, Gupta S S. Langmuir, 2010, 26(8): 5772-5781
[40] Feng L B, Wang Y L, Wang N, Ma Y X. Polym. Bull., 2009, 63(3): 313-327
[41] Feng L B, Li H, Yang M J, Wang X W. Colloid Polym. Sci., 2010, 288(6): 673-680
[42] Hwang Y J, Lee Y H, Oh C, Jun Y D, Oh S G. J. Ind. Eng. Chem., 2006, 12(3): 380-386
[43] 钱晓静(Qian X J), 刘孝恒(Liu X H), 陆路德(Lu L D), 陈文杰(Chen W J), 汪信(Wang X). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2004, 20(3): 335-344
[44] 赵心怡(Zhao X Y), 叶明泉(Ye M Q), 韩爱军(Han A J). 塑料工业(China Plastics Industry), 2006, 34(B05): 16-19
[45] Ossenkamp G C, Kemmitt T, Johnston J H. Langmuir, 2002, 18(15): 5749-5754
[46] Shi B F, Wang Y Q, Ren J W, Liu X H, Zhang Y, Guo Y L, Guo Y, Lu G Z. J. Mol. Catal. B: Enzym., 2010, 63(1/2): 50-56
[47] Fuertes A B, Vigon P V, Marta S. Chem. Comm., 2012, 48(49): 6124-6126
[48] Liu R, Mahurin S M, Li C, Unocic R R, Idrobo J C, Gao H J, Pennycook S J, Dai S. Angew. Chem. Int. Ed., 2011, 50(30): 6799-6802
[49] Beltran A B, Nisola G M, Cho E, Lee E E D, Chung W J. Appl. Surf. Sci., 2011, 258(61): 337-345
[50] Li X H, Cao Z, Zhang Z H, Dang H X. Appl. Surf. Sci., 2006, 252(22): 7856-7861
[51] Zou B, Hu Y, Yu D H, Jiang L, Liu W M, Song P. Colloid. Surface B, 2011, 88(1): 93-99
[52] Goto Y, Otsuka N, Sawada H. Polym. Advan. Technol., 2012, 23(3): 290-298
[53] Shan J, Nuopponen M, Jiang H, Viitala T, Kauppinen E, Kontturi K, Tenhu H. Macromolecules, 2005, 38(7): 2918-2926
[54] Galeotti F, Bertini F, Scavia G, Bolognesi A. J. Colloid Interf. Sci., 2011, 360 (2): 540-547
[55] Brassard J D, Sarkar D K, Perron J. ACS Appl. Mater. Inter., 2011, 3(9): 3583-3588
[56] Zhao Y, Li M, Lu Q H, Shi Z Y. Langmuir, 2008, 24(21): 12651-12657
[57] 钱晓静(Qian X J), 刘孝恒(Liu X H), 陆路德(Lu L D), 陈文杰(Chen W J), 汪信(Wang X). 合成化学(Chinese Journal of Synthetic Chemistry), 2005, 13(1): 80-82
[58] Kim H, Kim H G, Kim S, Kim S S. J. Membrane Sci., 2009, 344(1/2): 211-218
[59] Su H L, Hsu J M, Pan J P, Chern C S. J. Appl. Polym. Sci., 2007, 103(6): 3600-3608

[1] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[2] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[3] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[4] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[5] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[6] 张珠, 姜齐永, 李家柱, 王进军. 叶绿素类四吡咯大环分子的重排反应[J]. 化学进展, 2017, 29(2/3): 262-284.
[7] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[8] 王生杰, 蔡庆伟, 杜明轩, 曹美文, 徐海. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3): 229-241.
[9] 曾峰, 潘真真, 张梦, 黄永焯, 崔彦娜, 徐勤. 有序介孔二氧化硅纳米粒的制备及其肿瘤诊疗应用[J]. 化学进展, 2015, 27(10): 1356-1373.
[10] 卞书娟, 吴宏庆, 江旭恒, 龙亚峰, 陈勇. 复合介孔二氧化硅膜的制备及应用[J]. 化学进展, 2014, 26(08): 1352-1360.
[11] 邵再东, 张颖, 程璇. 新型力学性能增强二氧化硅气凝胶块体隔热材料[J]. 化学进展, 2014, 26(08): 1329-1338.
[12] 张倩, 单锋, 陆学民, 路庆华. 垂直取向介孔薄膜的制备[J]. 化学进展, 2012, 24(04): 492-500.
[13] 郭风, 朱桂茹, 高从堦. 有机-无机杂化介孔二氧化硅在环境保护中的应用[J]. 化学进展, 2011, 23(6): 1237-1250.
[14] 高成耀, 常明, 李晓伟, 李翠平. 硼掺杂金刚石电极及其电分析应用[J]. 化学进展, 2011, 23(5): 951-962.
[15] 王静, 刘爽, 张春, 徐辉碧, 杨祥良. 手性纳米二氧化硅的制备和应用[J]. 化学进展, 2011, 23(4): 669-678.