English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1835-1845 DOI: 10.7536/PC200633 前一篇   后一篇

• •

从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望

缪谦1,2,**(), 杨代月1,3   

  1. 1. 中国科学院上海有机化学研究所沪港合成化学联合实验室 上海 200032
    2. 香港中文大学化学系 香港 999077
    3. 河南师范大学化学化工学院 新乡 453007
  • 收稿日期:2020-06-10 修回日期:2020-08-26 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 缪谦
  • 作者简介:

    缪谦

    2000年毕业于中国科技大学获学士学位, 2005年毕业于哥伦比亚大学获博士学位。在加利福尼亚大学洛杉矶分校完成博士后,2006年加入香港中文大学化学系任助理教授,分别于2012和2016年晋升副教授、教授。研究领域包括设计、合成新颖的稠环芳香分子,探索全新的碳纳米结构,开发高性能有机半导体材料及有机电子器件。

    ** Corresponding author e-mail:
  • 基金资助:
    裘槎基金会(裘槎优秀科研者奖)()

From Polycyclic Arenes Containing Eight-Membered Rings to Negatively Curved Nanocarbons: Progress and Outlook

Miao Qian1,2,**(), Yang Daiyue1,3   

  1. 1. Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    2. Department of Chemistry, the Chinese University of Hong Kong, Hong Kong 999077, China
    3. College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received:2020-06-10 Revised:2020-08-26 Online:2020-11-24 Published:2020-09-01
  • Contact: Miao Qian
  • Supported by:
    the Croucher Senior Research Fellowship()

完全由sp2杂化的碳原子所构成的同素异形体呈现出或平坦或弯曲的面,该表面的曲率反映了碳纳米结构的整体几何特性。完全由六元环构成的石墨烯的曲率为零;由六元环和五元环共同构成的富勒烯的曲率为正;向碳原子的六边形网格中引入七元环或八元环则产生形如马鞍的面,其曲率为负。具有负曲率的三维周期性碳结构被命名为马凯晶体或碳施瓦茨体,是碳纳米科学研究长期追寻的目标,然而至今仍未被确定无疑地合成出来。为精确合成具有负曲率的碳纳米结构,一种至下而上的策略是先合成具有负曲率的稠环芳烃,再以其为模板或单体来制备更大的碳纳米结构。具有负曲率的稠环芳烃可以通过向稠环骨架中引入七元或八元环来设计、合成,表现出一些平面稠环芳烃所不具有的结构特征与性质。本文以包含八元环的稠环芳烃为例,介绍具有负曲率的稠环芳烃的设计、合成、立体动力学及其他特征,并展望具有负曲率的碳纳米结构的新研究方向。

Carbon allotropes comprised exclusively of sp2 hybridized carbon atoms present flat or curved surface, whose overall geometric feature is reflected by its curvature. Consisting of six-membered rings exclusively, graphene has zero curvature. Five-membered rings induce positive curvature as displayed in fullerenes; while seven- or eight-membered rings in a hexagonal lattice of carbon induce negative curvature as displayed in a saddle-shaped surface. Negatively curved nanocarbons of three-dimensional periodic structures are named as Mackay crystal or carbon schwarzites, which are a long-sought target in carbon nanoscience, but have not been synthesized unambiguously yet. A bottom-up approach to negatively curved nanocarbons involves synthesis of negatively curved polycyclic arenes, which can then be used as templates or monomers in synthesis of larger nanocarbons. Negatively curved polycyclic arenes, which can be designed and synthesized by introduction of seven or eight-membered rings into polycyclic aromatic frameworks, exhibit structural characteristics and properties that are not available to planar polycyclic arenes. Taking the polycyclic arenes containing eight-membered rings as examples, this review article describes research in the design, synthesis, stereochemical dynamics, and other characteristics of negatively curved polycyclic arenes, and provides an outlook for new directions in the research of negatively curved nanocarbons.

Contents

1 Introduction: negatively curved nanocarbons

2 Building blocks containing eight-membered rings

3 Design and synthesis of negatively curved polycyclic arenes

4 Stereochemistry and other characteristics of negatively curved polycyclic arenes

5 Conclusion and outlook

()
图1 (a) 石墨烯和(b) 富勒烯C60一个顶点处的多边形曲率的示意图
Fig.1 Schematic drawings for the polygonal curvature of(a) graphene and(b) C60, respectively, at a vertex. Copyright 2018, ACS
图2 (a) 首个碳施瓦茨体的晶胞结构(其中的八元环以橙色显示);(b) 一个假想的环状碳纳米管(其中的七元环和五元环分别以红色和蓝色显示)
Fig.2 (a) A unit cell of the first proposed Mackay crystal with octagons highlighted in orange;(b) a toroidal carbon nanotube with heptagons and pentagons highlighted in red and blue, respectively
图3 因包含七元环而具有负曲率的稠环芳烃
Fig.3 Negatively curved polycyclic arenes containing heptagons
图4 具有不同拓扑结构的八元环
Fig.4 Eight-membered rings with different topology
图5 设计、合成具有负曲率的稠环芳烃所需的含有八元环的结构单元
Fig.5 Octagon-containing building blocks for design and synthesis of negatively curved polycyclic arenes
图6 包含[8]圈烯结构单元(以红色突出显示)的稠环芳烃
Fig.6 Polycyclic arenes containing an [8]circulene unit(highlighted in red)
图7 (a) 取代的[8]圈烯(8a/b)的合成;(b) 四苯并[8]圈烯(4)的合成[18, 25]
Fig.7 (a) Synthesis of substituted [8]circulenes(8a/b);(b) synthesis of tetrabenzo[8]circulene(4)[18, 25]
图8 八苯并[8]圈烯(5a/b)的合成[27]
Fig.8 Synthesis of octabenzo[8]circulenes(5a/b)[27]
图9 (a) 扭曲的纳米石墨烯6a/b的合成;(b) 从23a的朔尔反应得到的部分关环产物[28]
Fig.9 (a) Synthesis of twisted nanographenes 6a/b;(b) structures of the incompletely cyclized products from the Scholl reaction of 23a[28]
图10 含有三个八元环的稠环芳烃26的合成[29]
Fig.10 Synthesis of 26, a polycyclic arene containing three eight-membered rings[29]
图11 通过单晶X射线衍射获得的8a(a) 与4(b)的结构(氢原子未显示)[17, 18, 21]
Fig.11 Structure of 8a(a) and 4(b) in single crystals(hydrogen atoms are removed for clarity)[17, 18, 21]. Copyright 2018, ACS.
图12 (a) 密度泛函理论计算得出的5a的两种构象;(b) 密度泛函理论计算得出的5a的立体动力学路径(c) 5b的晶体结构(叔丁基未显示,与叔丁基相连的碳原子以洋红色显示)[27]
Fig.12 (a) DFT-calculated conformations of 5a;(b) the DFT-calculated stereodynamic pathway of 5a;(c) structure of 5b in single crystals(the tert-butyl groups are removed for clarity, and the carbons that are bonded to tert-butyl groups are shown in magenta)[27]. Copyright 2019, ACS.
图13 八苯并[8]圈烯5b 在晶体中的分子堆积方式[27]
Fig.13 Molecular packing of octabenzo[8]circulene 5b in crystals[27]. Copyright, 2019 ACS.
图14 (a) 通过单晶X射线衍射获得的6b的结构(其中的取代基与氢原子未显示);(b)密度泛函理论计算得出的6a'的立体动力学路径[21, 28]
Fig.14 (a) Structure of 6b in single crystals with substituents and hydrogen atoms removed for clarity;(b) DFT-calculated stereodynamic path of 6a'[21, 28]. Copyright, 2019 ACS.
图15 猴鞍形稠环芳烃(Sa, Sa, Sa)-26的晶体结构:(a) 侧视图;(b) 俯视图(己基未显示)
Fig.15 Crystal structure of monkey-saddle-shaped polycyclic arene(Sa, Sa, Sa)-26:(a) side view;(b) top view(hexyl groups are removed for clarity).
图16 (a) 碳纳米环带30 与碳纳米环31 的晶体结构;(b) 具有负曲率的碳纳米环带32与碳笼33的分子模型(其中的八元环以橙色显示,七元环以红色显示)[29, 32~34]
Fig.16 (a) Structures of carbon nanobelt 30 and carbon nanoring 31 in single crystals;(b) molecular models of negatively curved carbon nanobelt 32 and carbon cage33(eight- and seven-membered rings are highlighted with red and orange, respectively)[29, 32~34]
[1]
Rickhaus, M, Mayor, M, Juríek M. Chem. Soc. Rev., 2017, 46: 1643.
[2]
Venema G, A, Foundations of Geometry. 2nd ed. Pearson, 2012. Chapter 12.
[3]
Mackay A, L, Terrones H. Nature, 1991, 352: 762.
[4]
刘霞(Liu X). 全新碳形态汞黝矿结构制造成功(The New Carbon Form Was Successfully Manufactured:Schwarzite).科技日报(Science and Technology Daily),[2020-06-01]. 全新碳形态汞黝矿结构制造成功(The New Carbon Form Was Successfully Manufactured:Schwarzite).科技日报(Science and Technology Daily),[2020-06-01].
[5]
Beuerle, F, Herrmann, C, Whalley A, C, Valente, C, Gamburd, A, Ratner M, A, Stoddart J F. Chem. Eur. J., 2011, 17: 3868.
[6]
Odkhuu, D, Jung D, H, Lee, H, Han S, S, Choi, S-H, Ruoff R, S, Park N. Carbon, 2014, 66: 39.
[7]
Park, N, Yoon, M, Berber, S, Ihm, J, Osawa, E, Tománek D. Phys. Rev. Lett., 2003, 91: 237204.
[8]
Iijima, S, Ichihashi, T, Ando Y. Nature, 1992, 356: 776.
[9]
Kim, K, Lee, T, Kwon, Y, Seo, Y, Song, J, Park, J, Lee, H, Park J, Y, Ihee, H, Cho S, J, Ryoo R. Nature, 2016, 535: 131.
[10]
Braun, E, Lee, Y, Moosavi S, M, Barthel, S, Mercado, R, Baburin I, A, Proserpio D, M, Smit B. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: E8116.
[11]
Yamamoto, K, Harada, T, Nakazaki, M, Naka, T, Kai, Y, Harada, S, Kasai N. J. Am. Chem. Soc., 1983, 105: 7171.
[12]
Luo J, Y, Xu X, M, Mao R, X, Miao Q. J. Am. Chem. Soc., 2012, 134: 13796.
[13]
(a) Gu, X, Li H, Y, Shan B, W, Liu Z, F, Miao Q. Org., Lett., 2017, 19: 2246;(b) Miao Q. Chin. Chem. Lett., 2019, 30: 1506.
[14]
Cheung K, Y, Xu X, M, Miao Q. J. Am. Chem. Soc., 2015, 137: 3910.
[15]
Pun S, H, Chan C, K, Luo J, Y, Liu Z, F, Miao Q. Angew. Chem. Int. Ed., 2018, 57: 1581.
[16]
Kawasumi, K, Zhang Q, Y, Segawa, Y, Scott L, T, Itami K. Nat. Chem., 2013, 5: 739.
[17]
Feng C, N, Kuo M, Y, Wu Y T. Angew. Chem. Int. Ed., 2013, 52: 7791.
[18]
Sakamoto, Y, Suzuki T. J. Am. Chem. Soc., 2013, 135: 14074.
[19]
(a) Fukui, N, Kim, T, Kim, D, Osuka A. J. Am. Chem., Soc., 2017, 139: 9075;(b) 2018, 57: 8555;(c) 2018, 140: 10430;(d) 2018, 140: 17188;(e) Campaña A G. Angew. Chem. Int. Ed., 2020, 59: 7139.
[20]
(a) Má, rquez I R, Castro-Ferná, ndez S, Millá, n A, Campañ, a A G.Chem. Commun., 2018, 54: 6705;(b) Majewski M A.Angew. Chem. Int. Ed., 2019, 58: 86.
[21]
Pun S, H, Miao Q. Acc. Chem. Res., 2018, 51: 1630.
[22]
Irngartinger, H, Reibel W R K. Acta. Cryst. B, 1981, 37: 1724.
[23]
Wong H N, C, Sondheimer F. Tetrahedron, 1981, 37: 99.
[24]
Salcedo, R, Sansores L, E, Picazo, A, Sansón L. J. Mol. Struct.: THEOCHEM, 2004, 678: 211.
[25]
Miller R, W, Duncan A, K, Schneebeli S, T, Gray D, L, Whalley A C. Chem. Eur. J., 2014, 20: 3705.
[26]
Miller R, W, Averill S, E, Van Wyck S, J, Whalley A C. J. Org. Chem., 2016, 81: 12001.
[27]
Pun S, H, Wang Y, J, Chu, M, Chan C, K, Li Y, K, Liu Z, F, Miao Q. J. Am. Chem. Soc., 2019, 141: 9680.
[28]
Cheung K, Y, Chan C, K, Liu Z, F, Miao Q. Angew. Chem. Int. Ed., 2017, 56: 9003.
[29]
Kirschbaum, T, Rominger, F, Mastalerz M. Angew. Chem. Int. Ed., 2020, 59: 270.
[30]
Feng C, N, Hsu W, C, Li J, Y, Kuo M, Y, Wu Y T. Chem. Eur. J., 2016, 22: 9198.
[31]
Grzybowski, M, Sadowski, B, Butenschö, n H, Gryko D T. Angew. Chem. Int. Ed., 2020, 59: 2998.
[32]
Esser, B, Rominger, F, Gleiter G. J. Am. Chem. Soc., 2008, 130: 6716.
[33]
Cheung K, Y, Yang, S, Miao Q. Org. Chem. Front., 2017, 4: 699.
[34]
Chen, H, Miao Q. ChemPlusChem, 2019, 84: 627.
[35]
Omachi, H, Nakayama, T, Takahashi, E, Segawa, Y, Itami K. Nature Chem., 2013, 5: 572.
[36]
Sanchez-Valencia J, R, Dienel, T, Grö, ning O, Shorubalko, I, Mueller, A, Jansen, M, Amsharov, K, Ruffieux, P, Fasel R. Nature, 2014, 512: 61.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[3] 付如刚, 李政, 高磊. 直接以碳化钙为炔源合成有机化合物[J]. 化学进展, 2019, 31(9): 1303-1313.
[4] 邹怀波, 汪华华, 梅光泉, 刘海洋, 张启光. 铁咔咯配合物在有机合成中的催化应用[J]. 化学进展, 2015, 27(6): 666-674.
[5] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[6] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[7] 王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿. 深共融溶剂在有机合成中的应用[J]. 化学进展, 2014, 26(05): 784-795.
[8] 徐立宁, 张军涛, 陶成, 曹小平. 烯氯化合物及其合成进展[J]. 化学进展, 2013, 25(11): 1876-1887.
[9] 侯晨, 朱浩, 李亦婧, 李彦锋*. 固定化脯氨酸及其衍生物用于催化不对称有机合成[J]. 化学进展, 2012, (9): 1729-1741.
[10] 王志会*, 王晓. 氮杂吲哚合成[J]. 化学进展, 2012, (10): 1974-1982.
[11] 韩广甸, 金善炜, 吴毓林*. 黄鸣龙——我国有机化学的一位先驱[J]. 化学进展, 2012, 24(07): 1229-1235.
[12] 沈金海, 程国林, 崔秀灵*. 基于钯催化C-H键活化的多米诺反应[J]. 化学进展, 2012, 24(07): 1324-1336.
[13] 包春燕*, 贾慧娟, 刘涛, 汪奕, 彭伟, 朱麟勇. 双分子层膜人工离子通道的合成[J]. 化学进展, 2012, 24(07): 1337-1345.
[14] 刘艳红, 周林成, 惠新平, 赵光辉, 李彦锋. 超顺磁性纳米催化剂在有机合成中的应用[J]. 化学进展, 2012, 24(0203): 327-337.
[15] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.