English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1203-1218 DOI: 10.7536/PC200554 前一篇   后一篇

• 综述 •

凝聚态化学研究中的动力学振动光谱理论与技术

潘志君1, 庄巍1,**(), 王鸿飞2,3,**()   

  1. 1.中国科学院福建物质结构研究所 结构化学国家重点实验室 福州 350002
    2.复旦大学化学系 上海市分子催化和功能材料重点实验室 上海 200438
    3.西湖大学理学院 杭州 310024
  • 收稿日期:2020-05-09 修回日期:2020-05-20 出版日期:2020-08-24 发布日期:2020-06-03
  • 通讯作者: 庄巍, 王鸿飞
  • 基金资助:
    国家自然科学基金项目(21727802); 国家自然科学基金项目(21873101)

Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques

Zhijun Pan1, Wei Zhuang1,**(), Hongfei Wang2,3,**()   

  1. 1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
    2. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
    3. School of Science, Westlake University, Hangzhou 310024, China
  • Received:2020-05-09 Revised:2020-05-20 Online:2020-08-24 Published:2020-06-03
  • Contact: Wei Zhuang, Hongfei Wang
  • About author:
    ** e-mail: (Wei Zhuang);
  • Supported by:
    the National Natural Science Foundation of China(21727802); the National Natural Science Foundation of China(21873101)

化学变化的本质是化学键的形成与断裂。凝聚态化学的主要特征是分子内的物理与化学过程与周围环境之间的动态相互作用和动力学耦合,不仅会影响化学键形成与断裂的化学反应平衡与反应速率,还会改变化学反应的走向。动力学振动光谱技术是探测凝聚态体相中与表面上各种微观分子细节最为有力的当代谱学表征技术之一。与脉冲核磁技术类似,科学家们使用一组精心设计的激光脉冲在凝聚态体系中激发复杂的光学响应,所产生的信号中包含了比传统吸收光谱丰富得多的反应机理、分子与溶液结构、分子运动、电荷与能量传递等微观信息。近年来,各种动力学振动光谱被运用于凝聚态化学的各个领域,尤其是在溶液态和表界面态领域,获得了一系列突破性进展,并且处于不断发展的过程之中。在本文中,我们将回顾及展望动力学振动光谱技术的基本概念、实验方法和理论框架,以及它们在凝聚态及表面态化学中的重要应用。

The essence of chemical change is the formation and breaking of chemical bonds. The main feature of condensed matter chemistry is that the dynamic interaction and kinetic coupling between the physical and chemical processes in the molecule and the surrounding environment, not only affect the equilibrium and reaction rate of the chemical reaction of chemical bond formation and breaking process, but also change the direction and outcome of the chemical reaction. Dynamic vibration spectroscopy is one of the most powerful modern spectroscopic characterization techniques for detecting various microscopic molecular details in the condensed phase and on its surface or at its interface. Like the pulsed NMR technology, scientists use a set of carefully designed laser pulses to stimulate the complex optical responses in a condensed matter chemical system. The resulting signal contains a much richer information on reaction mechanism than that with traditional absorption spectra. The microscopic information of the molecules such as their structure, molecular motion, charge and energy transfer can be obtained. In recent years, various dynamic vibrational spectroscopy has been developed and applied in various fields of condensed-state chemistry, especially in the field of solution state and surface/interface state. A series of breakthroughs have been made and are in the process of continuous development. In this article, we briefly review and prospect the basic concepts of dynamic vibration spectroscopy techniques, experimental methods and theoretical frameworks, as well as their important applications in condensed state and surface state chemistry.

Contents

1 Introduction

2 Brief description of the experimental techniques

2.1 Two-dimensional coherent infrared spectroscopy

2.2 Interface selective sum-frequency generation vibrational spectroscopy (SFG-VS)

3 Theoretical description of the dynamics of the solution phase vibrational spectroscopy

3.1 SOS (sum over-states) method

3.2 NISE (numerical integration of the Schrödinger equation) method

3.3 NEP (nonlinear exciton propagation) method

3.4 SLE (stochastic Liouville equations) method

4 Two-dimensional infrared technique and its application to solution phase chemistry

5 Sum-frequency generation vibrational spectroscopy technique and its application to surface and interfacial chemistry

6 Conclusions and outlook

()
图1 不同物质状态和化学环境下化学反应及相互热力学关系(Hess循环)
Fig.1 Chemical reactions and thermodynamics under different states and chemical environment(Hess cycle)
图2 外差式探测(heterodyne-detected)的二维相干红外光谱实验示意图(左): 三个时间延迟t1, t2, t3 保持第三个时间延迟固定,并在涉及两个时间延迟的演化得到二维相关信号图。(右上): 沿相位匹配方向; $k_{I}=k_{1}+k_{2}+k_{3}$的两个耦合振动的二维光子回波谱。 ω1 和ω3是t1 和t3的傅里叶共轭物理量。 两种振动模式的频率涨落分别是慢速和反相关(左),慢速和相关(中),快速和反相关(右)。(右下):三个模型对应的线性吸收光谱
Fig.2 (left) Pulse configuration for a heterodyne detected multidimensional four-wave mixing experiment. Signals are recorded versus the three time delays t1, t2, t3, and displayed as 2D correlation plots involving two of the time delays, holding the third time delay fixed;(right top): 2D photon-echo spectra of two coupled vibrations in the phase-matching direction $k_{I}=k_{1}+k_{2}+k_{3}$. ω1 and ω3are the Fourier conjugate variables to t1 and t3. The frequency fluctuations of the two modes are slow and anti-correlated(left panel), slow and correlated(middle panel), fast and anti-correlated(right panel).(Right bottom): Linear absorptions for the three models
图3 二维红外振动回波实验示意图及振动回波脉冲序列和时间干涉图示例,这是外差检测到的结果振动回波技术[28]
Fig.3 Schematic diagram of two-dimensional infrared vibrational echo experiment. An example of vibrational echo pulse sequence and time interferogram is also shown, which is the result of heterodyne detection[28]
图4 (a)和频振动光谱基本原理示意图[35]。(b)时间分辨SFG实验中使用的实验装置示意图。设置用于研究表面及界面的过程的超快光谱和界面分子结构,及溶剂化、相互作用、能量和电子转移动力学等。其中泵浦光(pump)可以沿表面法线入射,也可以由其他角度入射[28]
Fig.4 (a) Basic principle of sum-frequency generation vibrational spectroscopy[35]; (b) Schematic diagram of experimental device used in time-resolved SFG experiment. The experimental device is configured to study ultrafast spectrum and molecular structure of the interface, solvation, interaction, energy and electron transfer dynamics, etc. of the surface and interface processes. The pump can be incident along the normal of the surface or other angles[28]
图5 常见的八条刘维尔空间路径(上)及其对应费曼图(下),每条刘维尔空间路径从左上的圆开始,而费曼图从底部开始演化[51]
Fig.5 Eight Liouville-space pathways(upper) and double-sided Feynman diagrams(lower) for two-dimensional spectroscopy in the rotating wave approximation. Each Liouville-space pathway starts from the upper-left circle, while the double-sided Feynman diagram starts from the bottom[51]
图6 表示在旋转波近似中有助于kI信号的Liouville空间路径的费曼图。这三种途径被称为激发态发射(ESE),基态漂白(GSB)和激发态吸收(ESA)
Fig.6 Feynman diagram representing the Liouville space path for the kI signal in the rotating wave approximation where these three pathways are called excited state emission(ESE), ground state bleaching(GSB), and excited state absorption(ESA)[32]
图7 在TAA中使用Jansen和Ruszel的NISE计算的β-发夹Trpzip2的酰胺I带的2DIR光谱
Fig.7 The 2DIR spectrum of the amide I region for β-hairpin Trpzip2 calculated in the TAA and using the NISE.[59]
图8 和频振动光谱在化学、材料、能源、环境和生命科学领域中的广泛应用和解决的科学问题[36]
Fig.8 Broad applications of sum frequency generation vibrational spectroscopy to various scientific problems in the fields of chemistry, materials, energy, environment, and life sciences[36]
图9 和频振动光谱原理示意。(A)共传播构型下的和频振动光谱的ssp偏振组合中和频振动光谱信号、入射的可见和红外光处于与界面垂直的共同入射平面中,其中光场的偏振方向p是指光电场方向在入射平面内,而偏振方向s是指光电长矢量方向与入射面垂直;(B)和频振动光谱的不同形式。(a)单共振和频振动光谱,基态振动态共振;(b)红外+可见双共振和频振动光谱,基态振动态和电子激发态双共振; (c)可见+红外双共振和频振动光谱,电子激发态和激发态振动态双共振;(d)可见+可见双共振和频电子光谱。(b、c、d)三种情形可以用于研究电子激发态相关的表面界面分子结构、传能及电子与质子转移过程等[36]
Fig.9 Illustration of the SFG-VS.(A) Showing the infrared(IR) and visible(Vis) beams incident in the same plane in a co-propagating geometry, with the SFG signal, the visible beam and the IR beam in the ssp polarization combination. The polarization of the optical field is defined as p polarization when the optical filed vector is within the incident plane, and it is s polarization when the optical field is perpendicular to the incident plane.(B) Various types of SFG processes that can be used to study ground state vibrational spectra and electronic spectra of molecular surfaces and interfaces. Type (a) is called the IR-SFG-VS, the most common single resonance SFG-VS with only the IR frequency in resonance with the ground state vibrational transition of the molecule of interest; Type (b) is called the IR-Vis double resonance SFG-VS(IR-Vis SFG-VS), where the IR frequency is in resonance with the ground state and the visible is in resonance with the electronic resonance of the molecule; Type (c) is called the Vis-IR double resonance SFG-VS(Vis-IR DR-SFG-VS); and the Type (d) is the Vis-Vis SFG-VS[36]
[1]
Polanyi J C, Zewail A H. Acc. Chem. Res., 1995,28(3):119. https://pubs.acs.org/doi/abs/10.1021/ar00051a005

doi: 10.1021/ar00051a005     URL    
[2]
Avouris P. Acc. Chem. Res., 1995,28(3):95. https://pubs.acs.org/doi/abs/10.1021/ar00051a002

doi: 10.1021/ar00051a002     URL    
[3]
Xu R. Natl. Sci. Rev., 2018,5:1. https://academic.oup.com/nsr/article/5/1/1/4826553

doi: 10.1093/nsr/nwx155     URL    
[4]
Xu R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2018,6(2):191. https://academic.oup.com/nsr/article/6/2/191/5173124

doi: 10.1093/nsr/nwy128     URL    
[5]
Levine R D. Molecular Reaction Dynamics. Oxford: Cambridge University Press, 2009.
[6]
Nitzan A, Press O U. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford: Oxford University Press, 2006.
[7]
Eisenthal K B. Chem. Rev., 1996,96:1343. https://www.ncbi.nlm.nih.gov/pubmed/11848793

doi: 10.1021/cr9502211     URL     pmid: 11848793
[8]
Arnolds H, Bonn M. Surf. Sci. Rep., 2010,65(2):45. d0496227-670c-4a9c-80a6-d504f24f1857http://www.sciencedirect.com/science/article/pii/S0167572910000026

doi: 10.1016/j.surfrep.2009.12.001     URL    
[9]
Robinson G W, Singh S, Krishnan R, Zhu S B, Lee J. J. Phys. Chem., 1990,94(1):4. https://pubs.acs.org/doi/abs/10.1021/j100364a002

doi: 10.1021/j100364a002     URL    
[10]
Shelby R M, Harris C B, Cornelius P A. J. Chem. Phys., 1979,70(1):34. http://scitation.aip.org/content/aip/journal/jcp/70/1/10.1063/1.437197

doi: 10.1063/1.437197     URL    
[11]
Oxtoby D W. Annu. Rev. Phys. Chem., 1981,32:77. http://www.annualreviews.org/doi/10.1146/annurev.pc.32.100181.000453

doi: 10.1146/annurev.pc.32.100181.000453     URL    
[12]
Hynes J T. Annu. Rev. Phys. Chem., 1985,36:573. http://www.annualreviews.org/doi/10.1146/annurev.pc.36.100185.003041

doi: 10.1146/annurev.pc.36.100185.003041     URL    
[13]
Hynes J T. Annu. Rev. Phys. Chem., 2015,66:1. https://www.ncbi.nlm.nih.gov/pubmed/25293391

doi: 10.1146/annurev-physchem-040214-121833     URL     pmid: 25293391
[14]
Owrutsky J C, Raftery D, Hochstrasser R M. Annu. Rev. Phys. Chem., 1994,45:519. https://www.ncbi.nlm.nih.gov/pubmed/7811356

URL     pmid: 7811356
[15]
Benjamin I. Chem. Rev., 1996,96(4):1449. https://www.ncbi.nlm.nih.gov/pubmed/11848798

doi: 10.1021/cr950230+     URL     pmid: 11848798
[16]
Ball P. Chem. Rev., 2008,108(1):74. https://www.ncbi.nlm.nih.gov/pubmed/18095715

doi: 10.1021/cr068037a     URL     pmid: 18095715
[17]
Gan W, Wu D, Zhang Z, Feng R R, Wang H F. J. Chem. Phys., 2006,124:114705. https://www.ncbi.nlm.nih.gov/pubmed/16555908

doi: 10.1063/1.2179794     URL     pmid: 16555908
[18]
Feng R R, Guo Y, Wang H F. J. Chem. Phys., 2014, 141: 18C507. https://www.ncbi.nlm.nih.gov/pubmed/25399172

doi: 10.1063/1.4895561     URL     pmid: 25399172
[19]
Nihonyanagi S, Mondal J A, Yamaguchi S, Tahara T. Annu. Rev. Phys. Chem., 2013,64:579. https://www.ncbi.nlm.nih.gov/pubmed/23331304

doi: 10.1146/annurev-physchem-040412-110138     URL     pmid: 23331304
[20]
Bagchi B. Chem. Rev., 2005,105:3197. https://www.ncbi.nlm.nih.gov/pubmed/16159150

doi: 10.1021/cr020661+     URL     pmid: 16159150
[21]
Pal S K, Zewail A H. Chem. Rev., 2004,104:2099. https://www.ncbi.nlm.nih.gov/pubmed/15080722

doi: 10.1021/cr020689l     URL     pmid: 15080722
[22]
Frauenfelder H, Chen G, Berendzen J, Fenimore P W, Jansson H, McMahon B H, Stroe I R, Swenson J, Young R D. Proc. Natl. Acad. Sci. U. S. A., 2009,106:5129. https://www.ncbi.nlm.nih.gov/pubmed/19251640

doi: 10.1073/pnas.0900336106     URL     pmid: 19251640
[23]
Hamm P, Zanni M. Concepts and Methods of 2D Infrared Spectroscopy. Oxford: Cambridge University Press, 2011.
[24]
Kratochvil H T, Carr J K, Matulef K, Annen A W, Li H, Maj M, Ostmeyer J, Serrano A L, Raghuraman H, Moran S D, Skinner J L, Perozo E, Roux B, Valiyaveetil F I, Zanni M T. Science, 2016,353:1040. https://www.ncbi.nlm.nih.gov/pubmed/27701114

doi: 10.1126/science.aag1447     URL     pmid: 27701114
[25]
Cho M. Two-Dimensional Optical Spectroscopy. CRC Press, 2009.
[26]
Cho M. Coherent Multidimensional Spectroscopy. Singapore: Springer, 2019.
[27]
Cho M H. Chem. Rev., 2008,108:1331. https://www.ncbi.nlm.nih.gov/pubmed/18363410

doi: 10.1021/cr078377b     URL     pmid: 18363410
[28]
Fayer M D. Ultrafast Infrared Vibrational Spectroscopy. Taylor & Francis, 2013.
[29]
Qin Y Z, Wang L J, Zhong D P. Proc. Natl. Acad. Sci. U. S. A., 2016,113:8424. https://www.ncbi.nlm.nih.gov/pubmed/27339138

doi: 10.1073/pnas.1602916113     URL     pmid: 27339138
[30]
Lind P A, Daniel R M, Monk C, Dunn R V. (BBA)-Proteins Proteom, 2004,1702(1):103.
[31]
Rinne K F, Gekle S, Netz R R. J. Phys. Chem. A, 2014,118(50):11667. https://www.ncbi.nlm.nih.gov/pubmed/25474321

doi: 10.1021/jp5066874     URL     pmid: 25474321
[32]
Mukamel S. Principles of Nonlinear Optical Spectroscopy. Oxford University Press, 1995.
[33]
Shen Y R. Fundamentals of Sum-Frequency Spectroscopy. Cambridge: Cambridge University Press, 2016.
[34]
Morita A. Theory of Sum Frequency Generation Spectroscopy. Singapore: Springer, 2018.
[35]
Wang H F, Velarde L, Gan W, Fu L. Annu. Rev. Phys. Chem., 2015,66:189. https://www.ncbi.nlm.nih.gov/pubmed/25493712

doi: 10.1146/annurev-physchem-040214-121322     URL     pmid: 25493712
[36]
Wang H F. Prog. Surf. Sci., 2016,91(4):155. https://linkinghub.elsevier.com/retrieve/pii/S0079681616300259

doi: 10.1016/j.progsurf.2016.10.001     URL    
[37]
Zhuang W, Hayashi T, Mukamel S. Angew. Chem. Int., 2009,48(21):3750. http://doi.wiley.com/10.1002/anie.v48%3A21

doi: 10.1002/anie.v48:21     URL    
[38]
Wang H F, Gan W, Lü R, Rao Y, Wu B H. Int. Rev. Phys. Chem., 2005,24(2):191. http://www.tandfonline.com/doi/abs/10.1080/01442350500225894

doi: 10.1080/01442350500225894     URL    
[39]
Buck M, Himmelhaus M. J. Vac. Sci. Technol. A. 2001,19(6):2717. http://scitation.aip.org/content/avs/journal/jvsta/19/6/10.1116/1.1414120

doi: 10.1116/1.1414120     URL    
[40]
Tian C S, Shen Y R. Surf. Sci. Reps., 2014,69(2/3):105.
[41]
Richter L J, Petralli-Mallow T P, Stephenson J C. Opt. Lett. 1998,23(20):1594. https://www.ncbi.nlm.nih.gov/pubmed/18091855

doi: 10.1364/ol.23.001594     URL     pmid: 18091855
[42]
Shen Y R. Annu. Rev. Phys. Chem., 2013,64:129. https://www.ncbi.nlm.nih.gov/pubmed/23245523

doi: 10.1146/annurev-physchem-040412-110110     URL     pmid: 23245523
[43]
Smith J P H S V. Anal. Chem., 2004, 76(15): 287 A.
[44]
Hu X H, Wei F, Wang H, Wang H F. J. Phys. Chem. C, 2019,123(24):15071. https://pubs.acs.org/doi/10.1021/acs.jpcc.9b03202

doi: 10.1021/acs.jpcc.9b03202     URL    
[45]
Laaser J E, Xiong W, Zanni M T. J. Phys. Chem. B, 2011,115(11):2536. https://www.ncbi.nlm.nih.gov/pubmed/21366211

doi: 10.1021/jp200757x     URL     pmid: 21366211
[46]
Laaser J E, Zanni M T. J. Phys. Chem. A, 2013,117(29):5875. https://www.ncbi.nlm.nih.gov/pubmed/23140356

doi: 10.1021/jp307721y     URL     pmid: 23140356
[47]
Zhang Z, Piatkowski L, Bakker H J, Bonn M. Nat. Chem., 2011,3:888. https://www.ncbi.nlm.nih.gov/pubmed/22024886

doi: 10.1038/nchem.1158     URL     pmid: 22024886
[48]
Wang J, Clark M L, Li Y, Kaslan C L, Kubiak C P, Xiong W. J. Phys. Chem. Lett., 2015,6(21):4204. https://www.ncbi.nlm.nih.gov/pubmed/26538035

doi: 10.1021/acs.jpclett.5b02158     URL     pmid: 26538035
[49]
Mukamel S. Annu. Rev. Phys. Chem., 2000,51:691. https://www.ncbi.nlm.nih.gov/pubmed/11031297

URL     pmid: 11031297
[50]
Velarde L, Wang H F. Phys. Chem. Chem. Phys., 2013,15:19970. https://www.ncbi.nlm.nih.gov/pubmed/24076622

doi: 10.1039/c3cp52577e     URL     pmid: 24076622
[51]
Xu J, Xu R X, Abramavicius D, Zhang H D, Yan Y J. Chin. J. Chem. Phys., 2011,24(5):497. http://cps.scitation.org/doi/10.1088/1674-0068/24/05/497-506

doi: 10.1088/1674-0068/24/05/497-506     URL    
[52]
Mukamel S, Abramavicius D. Chem. Rev., 2004,104(4):2073. https://www.ncbi.nlm.nih.gov/pubmed/15080721

doi: 10.1021/cr020681b     URL     pmid: 15080721
[53]
Simpson N, Hunt N T. Int. Rev. Phys. Chem., 2015,34(3):361. http://www.tandfonline.com/doi/full/10.1080/0144235X.2015.1061793

doi: 10.1080/0144235X.2015.1061793     URL    
[54]
Kubo R. J. Math. Phys., 1963,4(2):174. http://aip.scitation.org/doi/10.1063/1.1703941

doi: 10.1063/1.1703941     URL    
[55]
Jansen T L, Zhuang W, Mukamel S. J. Chem. Phys., 2004,121:10577. https://www.ncbi.nlm.nih.gov/pubmed/15549941

doi: 10.1063/1.1807824     URL     pmid: 15549941
[56]
Jansen T L, Knoester J. J. Chem. Phys., 2006,124:044502. https://www.ncbi.nlm.nih.gov/pubmed/16460180

doi: 10.1063/1.2148409     URL     pmid: 16460180
[57]
Jansen T L, Knoester J. J. Phys. Chem. B, 2006,110(45):22910. https://www.ncbi.nlm.nih.gov/pubmed/17092043

doi: 10.1021/jp064795t     URL     pmid: 17092043
[58]
Auer B M, Skinner J L. J. Chem. Phys., 2007,127(10):104105. https://www.ncbi.nlm.nih.gov/pubmed/17867735

doi: 10.1063/1.2766943     URL     pmid: 17867735
[59]
Jansen T L C, Ruszel W M. J. Chem. Phys., 2008,128(21):214501. https://www.ncbi.nlm.nih.gov/pubmed/18537427

doi: 10.1063/1.2931941     URL     pmid: 18537427
[60]
Tanimura Y, Kubo R. J. Phys. Soc. Jpn., 1989,58:101. https://journals.jps.jp/doi/10.1143/JPSJ.58.101

doi: 10.1143/JPSJ.58.101     URL    
[61]
Woutersen S, Mu Y G, Stock G, Hamm P. Proc. Natl. Acad. Sci. U. S. A., 2001,98(20):11254. https://www.ncbi.nlm.nih.gov/pubmed/11553784

doi: 10.1073/pnas.201169498     URL     pmid: 11553784
[62]
Idrissi A, Bartolini P, Ricci M, Righini R. Phys. Chem. Chem. Phys., 2003,5:4666. http://xlink.rsc.org/?DOI=b305654f

doi: 10.1039/b305654f     URL    
[63]
Cowan M L, Bruner B D, Huse N, Dwyer J R, Chugh B, Nibbering E T J, Elsaesser T, Miller R J D. Nature, 2005,434:199. https://www.ncbi.nlm.nih.gov/pubmed/15758995

doi: 10.1038/nature03383     URL     pmid: 15758995
[64]
Piletic I R, Tan H S, Fayer M D. J. Phys. Chem. B, 2005,109:21273. https://www.ncbi.nlm.nih.gov/pubmed/16853758

doi: 10.1021/jp051837p     URL     pmid: 16853758
[65]
Tan H S, Piletic I R, Riter R E, Levinger N E, Fayer M D. Phys. Rev. Lett., 2005,94:057405. https://www.ncbi.nlm.nih.gov/pubmed/15783696

doi: 10.1103/PhysRevLett.94.057405     URL     pmid: 15783696
[66]
Fenn E E, Wong D B, Giammanco C H, Fayer M D. J. Phys. Chem. B, 2011,115(40):11658. https://www.ncbi.nlm.nih.gov/pubmed/21899355

doi: 10.1021/jp206903k     URL     pmid: 21899355
[67]
Moilanen D E, Wong D, Rosenfeld D E, Fenn E E, Fayer M D. Proc. Natl. Acad. Sci. U S A., 2009,106(2):375. https://www.ncbi.nlm.nih.gov/pubmed/19106293

doi: 10.1073/pnas.0811489106     URL     pmid: 19106293
[68]
Cheatum C M, Tokmakoff A, Knoester J. J. Chem. Phys., 2004,120:8201. https://www.ncbi.nlm.nih.gov/pubmed/15267740

doi: 10.1063/1.1689637     URL     pmid: 15267740
[69]
Smith A W, Tokmakoff A. J. Chem. Phys., 2007,126:045109. https://www.ncbi.nlm.nih.gov/pubmed/17286519

doi: 10.1063/1.2428300     URL     pmid: 17286519
[70]
Smith A W, Tokmakoff A. Angew. Chem. Int. Ed., 2007,46(42):7984. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773     URL    
[71]
Smith A W, Lessing J, Ganim Z, Peng C S, Tokmakoff A, Roy S, Jansen T L C, Knoester J. J Phys. Chem. B, 2010,114(34):10913. https://www.ncbi.nlm.nih.gov/pubmed/20690697

doi: 10.1021/jp104017h     URL     pmid: 20690697
[72]
Roy S, Lessing J, Meisl G, Ganim Z, Tokmakoff A, Knoester J, Jansen T L C. J. Chem. Phys., 2011,135:234507. https://www.ncbi.nlm.nih.gov/pubmed/22191886

doi: 10.1063/1.3665417     URL     pmid: 22191886
[73]
Lessing J, Roy S, Reppert M, Baer M, Marx D, Jansen T L, Knoester J, Tokmakoff A. J. Am. Chem. Soc., 2012,134(11):5032. https://www.ncbi.nlm.nih.gov/pubmed/22356513

doi: 10.1021/ja2114135     URL     pmid: 22356513
[74]
Zhuang W, Sgourakis N G, Li Z Y, Garcia A E, Mukamel S. Proc. Natl. Acad. Sci. U S A., 2010,107(36):15687. https://www.ncbi.nlm.nih.gov/pubmed/20798063

doi: 10.1073/pnas.1002131107     URL     pmid: 20798063
[75]
Cahoon J F, Sawyer K R, Schlegel J P, Harris C B. Science, 2008,319(5871):1820. https://www.ncbi.nlm.nih.gov/pubmed/18369145

doi: 10.1126/science.1154041     URL     pmid: 18369145
[76]
Rosenfeld D E, Gengeliczki Z, Smith B J, Stack T D P, Fayer M D. Science, 2011,334(6056):634. https://www.ncbi.nlm.nih.gov/pubmed/22021674

doi: 10.1126/science.1211350     URL     pmid: 22021674
[77]
Ohno P E, Wang H F, Geiger F M. Nat. Comm., 2017,8:1032. http://www.nature.com/articles/s41467-017-01088-0

doi: 10.1038/s41467-017-01088-0     URL    
[78]
Yan E C Y, Fu L, Wang Z, Liu W. Chem. Rev., 2014,114(17):8471. https://www.ncbi.nlm.nih.gov/pubmed/24785638

doi: 10.1021/cr4006044     URL     pmid: 24785638
[79]
Hu X H, Fu L, Hou J, Zhang Y N, Zhang Z, Wang H F. J. Phys. Chem. Lett., 2020,11(4):1282. https://www.ncbi.nlm.nih.gov/pubmed/31977221

doi: 10.1021/acs.jpclett.9b03470     URL     pmid: 31977221
[80]
Shao C Y, Jin B, Mu Z, Lu H, Zhao Y Q, Wu Z F, Yan L M, Zhang Z S, Zhou Y C, Pan H H, Liu Z M, Tang R K. Sci. Adv., 2019, 5(8): eaaw9569. https://www.ncbi.nlm.nih.gov/pubmed/31497647

doi: 10.1126/sciadv.aaw9569     URL     pmid: 31497647
[81]
De Yoreo J J, Gilbert P U P A, Sommerdijk N A J M, Penn R L, Whitelam S, Joester D, Zhang H Z, Rimer J D, Navrotsky A, Banfield J F, Wallace A F, Michel F M, Meldrum F C, Cölfen H, Dove P M. Science, 2015, 349(6247): aaa6760. https://www.ncbi.nlm.nih.gov/pubmed/26228157

doi: 10.1126/science.aaa6760     URL     pmid: 26228157
[82]
Tuladhar A, Chase Z A, Baer M D, Legg B A, Tao J H, Zhang S, Winkelman A D, Wang Z M, Mundy C J, De Yoreo J J, Wang H F. J. Am. Chem. Soc., 2019,141(5):2135. https://www.ncbi.nlm.nih.gov/pubmed/30615440

doi: 10.1021/jacs.8b12483     URL     pmid: 30615440
[83]
Wang H, Borguet E, Eisenthal K B. J. Phys. Chem. B, 1998,102(25):4927. https://pubs.acs.org/doi/10.1021/jp9806563

doi: 10.1021/jp9806563     URL    
[84]
Raschke M B, Hayashi M, Lin S H, Shen Y R. Chem. Phys. Lett., 2002,359(5/6):367. https://linkinghub.elsevier.com/retrieve/pii/S0009261402005602

doi: 10.1016/S0009-2614(02)00560-2     URL    
[85]
Wu D, Deng G H, Guo Y, Wang H F. J. Phys. Chem. A, 2009,113(21):6058. https://www.ncbi.nlm.nih.gov/pubmed/19422180

doi: 10.1021/jp901655j     URL     pmid: 19422180
[86]
Yang L, Niu Y L, Lin C K, Hayashi M, Zhu C Y, Lin S H. In: Advances in Chemical Physics, 2014. 295.
[87]
Dong H, Lewis N H C, Oliver T A A, Fleming G R. J. Chem. Phys., 2015,142(17):174201. https://www.ncbi.nlm.nih.gov/pubmed/25956092

doi: 10.1063/1.4919684     URL     pmid: 25956092
[88]
Oliver T A A, Lewis N H C, Fleming G R. Proc. Natl. Acad. Sci. U. S. A., 2014,111(28):10061. https://www.ncbi.nlm.nih.gov/pubmed/24927586

doi: 10.1073/pnas.1409207111     URL     pmid: 24927586
[89]
Courtney T L, Fox Z W, Slenkamp K M, Khalil M. J. Chem. Phys., 2015,143(15):154201. https://www.ncbi.nlm.nih.gov/pubmed/26493900

doi: 10.1063/1.4932983     URL     pmid: 26493900
[1] 宋建, 庄巍*. 蛋白质二维红外相干光谱的理论研究[J]. 化学进展, 2012, 24(06): 1065-1081.
阅读次数
全文


摘要