English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1219-1230 DOI: 10.7536/PC200210 前一篇   后一篇

• 综述 •

基于全散射技术局域结构确定与凝聚态物质

李强1, 林鲲1, 邢献然1,**()   

  1. 1. 北京材料基因工程高精尖创新中心 北京科技大学固体化学研究所 北京 100083
  • 收稿日期:2020-02-15 修回日期:2020-05-14 出版日期:2020-08-24 发布日期:2020-06-03
  • 通讯作者: 邢献然
  • 基金资助:
    国家自然科学基金项目(21590793); 国家自然科学基金项目(21731001)

Local Structure Determination Based on Total Scattering and Condensed Matter

Qiang Li1, Kun Lin1, Xianran Xing1,**()   

  1. 1. Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-02-15 Revised:2020-05-14 Online:2020-08-24 Published:2020-06-03
  • Contact: Xianran Xing
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(21590793); National Natural Science Foundation of China(21731001)

原子或分子的堆积方式和元素分布是凝聚态物质的核心问题,而局域结构的精确测定则为揭示原子堆积方式和元素分布提供了重要手段。获得与化学成键直接关联的局域结构信息,是人们认识化学反应,理解功能材料设计结构本质的重要依据。基于全散射技术的原子对分布函数方法(PDF),通过考虑原子对间距的空间分布规律,为具有不同结晶状态和团聚方式的凝聚态体系提供了全尺度的结构信息。本文从介绍全散射和原子对分布函数方法的理论基础出发,根据凝聚态物质的聚集形态差异和结构化学特点,列举了近年来在研究凝聚态物质的原子对分布函数过程中,结合原位温度场、反向蒙特卡洛等方法获得的物质局域结构信息和短程到长程的结构演变。通过分析局域结构与长程结构的对比差异,从局域尺度的视角为研究凝聚态物质的化学反应、功能物性优化和外场响应提供了新的思路。

The packing form of atoms or molecules in the structure and elemental spatial distribution are the core problems of condensed matter. Precise revelation of local structure is one of the most important methods to address such kind of issues. The acquisition of local structural information, which is directly correlated to chemical bonding, provides the deep insight of chemical reaction and understanding for the intrinsic structure-function relationship of design for functional materials. The atomic pair distribution function(PDF) based on the total scattering method, considering the spatial distribution regularities of atomic pair distance in radial direction, demonstrates the full-range structural information of condensed matter systems with different crystallinity and agglomeration. This review starts from the theoretical basis of total scattering and PDF. Refer to the differences of aggregation morphology and structural chemistry features, the representative examples with local structural novelty are shown. The specific introduction for the recent results about structural evolution demonstrate the distinct characteristics from short to long range during the application of the atomic pair distribution function combining in-situ temperature field and reverse monte carlo method. The new viewpoint from the local structure to the chemical reaction, optimization of functional properties and responses to external fields is proposed.

Contents

1 Introduction

2 The superiority of PDF in the study of short-range coordination structure in disordered solid and liquid

3 Local structural information of ordered solids from total scattering

4 Short-range ordering in nano materials and interfaces

5 PDF in chemical reaction

6 Conclusion and outlook

()
图1 (a)AgBr的全散射谱,插图为阴影部分的放大图,红色虚线为漫散射信号[13];(b)Pt纳米颗粒的原子对分布函数、近邻配位结构和各数据信息对应的物理含义
Fig.1 (a) The total scattering pattern of AgBr. The inset shows the magnified shaded region with the red dashed line as the diffuse scattering part[13];(b) PDF of Pt nanoparticles, neighbouring coordination and the corresponding physical meanings of each part in the atomic pair distribution function.
表1 局域结构与其他结构研究方法比较[17]
Table 1 Comparison of method for local structure and others[17]
图2 玻璃态GeSe2中基于高斯峰型拟合的部分PDF[24]
Fig.2 Partial PDF of glassy GeSe2 from Gaussian fits[24]
图3 (a)Cu64.5Zr35.5块状金属玻璃在压应力下的应力应变曲线,插图中显示无载荷条件下的二维衍射环及力场施加方向;(b)不同压应力下原子对分布函数的各向同性组分ρ0和各向异性组分ρ2[25]
Fig.3 (a) The compressive stress-strain curve of Cu64.5Zr35.5 bulk metallic glass. Inset is the 2D diffraction pattern without applied stress and loading direction.(b) The isotropic(ρ0)and anisotropic(ρ2) components of pair distribution function for Cu64.5Zr35.5 bulk metallic glass under the compressive stress[25]
图4 (a,b)变温过程中液态Zn的全散射结构函数和原子对分布函数;(c,d)变温过程中液态In的全散射结构函数和原子对分布函数[26]
Fig.4 (a,b) The total structure factor and PDF of liquid Zn as the function of temperature;(c,d) The total structure factor and PDF of liquid In as the function of temperature. The inset shows the amplified region with dashed box[26]
图5 基于中子全散射和同位素替代获取的液体水中不同原子对的对分布函数[27]
Fig.5 The partial PDF of H2O from neutron total scattering and isotopic substitution[27]
图6 具有不同化学替代浓度的Ga1-xInxAs在10 K下的原子对分布函数[31]
Fig.6 The PDF of Ga1-xInxAs under 10 K[31]
图7 Zn(CN)2中由PDF获得的最近邻(蓝)和次近邻(红)Zn-C/N键长的膨胀行为[33]
Fig.7 Temperature dependence of nearest and next-nearest Zn-C/N bond length in Zn(CN)2[33]
图8 (a) ZrW2O8结构中ZrO6八面体和WO4四面体的连接方式和旋转模式;(b)ZrW2O8近邻区域XPDF随温度的变化[35]
Fig.8 (a) The linkage between ZrO6 octahedron and WO4 tetrahedron and the rotating mode;(b) Temperature dependence of the short-range region in the PDF of ZrW2O8[35]
图9 (a,b)(Sc0.85Ga0.05Fe0.1)F3基于立方结构(a)和三方结构(b)的PDF拟合[36];(c)反钙钛矿Mn3Cu1-xGexN基于T4结构模型拟合的近邻区域nPDF[37]
Fig.9 (a,b) PDF fit of(Sc0.85Ga0.05Fe0.1)F3 with cubic(a) and rhombohedral(b) models[36];(c) The short-range region of PDF fit for antiperovskite Mn3Cu1-xGexN with T4 model[37]
图10 (a)UO2.07的原子对分布函数在高温下的反向蒙特卡洛拟合结果[38];(b)r-WS2的原子对分布函数及拟合结果[39]
Fig.10 (a) RMC for the PDF of UO2.07 under high temperature[38];(b) Fitting result for the PDF of r-WS2[39]
图11 (a)Pt41Ni59合金纳米颗粒的原子对分布函数的RMC拟合结果和模型[43];(b)PtFe有序纳米颗粒的局域相与L10相的拟合结果[44]
Fig.11 (a) PDF and RMC of Pt41Ni59 nanoparticles[43];(b) Local phases and PDF fitting based on L10 phase for ordered PtFe nanoparticles[44]
图12 (a)CeO2纳米颗粒原子对分布函数及近邻配位示意图;(b)基于四方相结构的CeO2纳米颗粒PDF拟合结果[45];(c,d)孪晶SnO2纳米线在孪晶界处的高分辨电镜图及原子对分布函数拟合结果[46]
Fig.12 (a) PDF of CeO2 nanoparticles and the local coordination;(b) PDF fitting based on tetragonal phase for CeO2 nanoparticles[45];(c,d) HRTEM image of SnO2 twin crystal nanowires and PDF fitting[46]
图13 (a)Li(NiMn)0.5O2中过渡金属层在随机状态下的结构示意图以及(b) PDF的RMC拟合结果[47];(c)第一次放电过程Si负极的非原位PDF测试[48]
Fig.13 (a) Honeycomb representation of the transition metal layer in Li(NiMn)0.5O2 and(b) the RMC of PDF[47];(c) Ex-situ PDF of silicon negative electrodes during first discharge[48]
图14 (a)吸附水和乙醇后4 nm的SnO2颗粒在200 ℃和300 ℃下的原子对分布函数[52];(b)吸附了砷酸根离子的γ-Al2O3的差式原子对分布函数[53]
Fig.14 (a)PDF of 4 nm SnO2 with adsorbed water or ethanol under 200 ℃ and 300 ℃[52];(b)Differential PDF of γ-Al2O3 with arsenate adsorbing[53]
[1]
Xu R. Natl. Sci. Rev., 2018,5:1.
[2]
马礼敦(M L D). 物理学进展(Progress in Physics), 2014,2:4.
[3]
冯端(F D). 物理学报(Acta Physica Sinica), 1979,2:141.
[4]
Farrow C L, Juhas P, Liu J W, Bryndin D, Božin E S, Bloch J, Proffen Th, Billinge S J L. J. Phys.: Condens. Matter, 2007,19(33):335219.
[5]
Billinge S J L. Z. Kristallogr, 2004,219:117.
[6]
Egami T, Billinge S J L. Underneath the Bragg peaks: Structural Analysis of Complex Materials. Amsterdam:Elsevier, 2003. 25.
[7]
Dove M T, Tucker M G, Keen D A. Eur. J. Mineral., 2002,14(2):331. http://www.schweizerbart.de/papers/ejm/detail/14/54167/Neutron_total_scattering_method_simultaneous_deter?af=crossref

doi: 10.1127/0935-1221/2002/0014-0331     URL    
[8]
Sears V F. Neutron News, 1992,3(3):26. http://www.tandfonline.com/doi/abs/10.1080/10448639208218770

doi: 10.1080/10448639208218770     URL    
[9]
Gibson J M, Treacy M M J. Phys. Rev. Lett., 1997,78(6):1074.
[10]
Di Cicco A, Trapananti A, Faggioni S. Phys. Rev. Lett., 2003,91(13):135505. https://www.ncbi.nlm.nih.gov/pubmed/14525317

doi: 10.1103/PhysRevLett.91.135505     URL     pmid: 14525317
[11]
Keen, David A, Goodwin, Andrew L. Nature, 521(7552):303. https://www.ncbi.nlm.nih.gov/pubmed/25993960

doi: 10.1038/nature14453     URL     pmid: 25993960
[12]
Fornasini P, Ahmed S I, Sanson A, Vaccari M, Phys. Status Solidi, 2008,245(11):2497.
[13]
Young C A, Goodwin A L. J. Mater. Chem., 2011,21(18):6464.
[14]
Koningsberger D C, Mojet B L, Van Dorssen G E, Ramaker D E, Topics in Catalysis, 2000,10(3/4):143.
[15]
Indris S, Scheuermann M, Becker S M, Šepelák V, Kruk R, Suffner J, Gyger F, Feldmann C, Ulrich A S, Hahn H. J. Phys. Chem. C, 2011,115(14):6433.
[16]
Hammel P C, Reyes A P, Cheong S W, Fisk Z, Schirber J E. Phys. Rev. Lett., 1993,71(3):440. https://www.ncbi.nlm.nih.gov/pubmed/10055271

doi: 10.1103/PhysRevLett.71.440     URL     pmid: 10055271
[17]
Billinge S J L, Levin I. Science, 2007,316(5824):561. https://www.ncbi.nlm.nih.gov/pubmed/17463280

doi: 10.1126/science.1135080     URL     pmid: 17463280
[18]
李树棠(Li S T). 晶体X射线衍射学基础(Fundamentals of Crystal X-ray Diffraction). 北京: 冶金工业出版社 (Beijing: Metallurgical Industry Press), 1990. 208.
[19]
Billinge S J L, Thorpe M F. Local Structure from Diffraction. New York: Kluwer, 2006. 11.
[20]
Ma D, Stoica A D, Wang X L. Nature Mater., 2009,8(1):30. https://doi.org/10.1038/nmat2340

doi: 10.1038/nmat2340     URL    
[21]
Basak S, Clarke R, Nagel S R. Phys. Rev. B, 1979,20(8):3388. https://link.aps.org/doi/10.1103/PhysRevB.20.3388

doi: 10.1103/PhysRevB.20.3388     URL    
[22]
Billinge S J L, Dykhne T, Juhás P, Božin E, Taylor R, Flor-encec A J, Shankland K. CrystEngComm., 2010,12(5):1366.
[23]
Svab E, Kroo N, Ishmaev S N. Solid State Commun., 1982,44(8):1151.
[24]
Petri I, Salmon P S, Fischer H E. Phys. Rev. Lett., 2000,84(11):2413. https://www.ncbi.nlm.nih.gov/pubmed/11018898

doi: 10.1103/PhysRevLett.84.2413     URL     pmid: 11018898
[25]
Wang G, Mattern N, Pauly S, Pauly S, Bednarčik J, Eckert J, Appl. Phys. Lett., 2009,95(25):251906.
[26]
Zhang W, Wang X, Cao Q P, Zhang D, Jiang J Z. J. Phys. Chem. B, 2019,123(32):7055. https://www.ncbi.nlm.nih.gov/pubmed/31365259

doi: 10.1021/acs.jpcb.9b05258     URL     pmid: 31365259
[27]
Narten A H, Thiessen W E, Blum L. Science, 1982,217(4564):1033. https://www.ncbi.nlm.nih.gov/pubmed/17839340

doi: 10.1126/science.217.4564.1033     URL     pmid: 17839340
[28]
Soper A K. J. Chem. Phys., 1994,101(8):6888.
[29]
Kan D, Anbusathaiah V, Takeuchi I. Adv. Mater., 2011,23(15):1765. https://www.ncbi.nlm.nih.gov/pubmed/21438031

doi: 10.1002/adma.201004503     URL     pmid: 21438031
[30]
Dias A, Khalam L A, Sebastian M T, William A P C, Moreira R L. Chem. Mater., 2006,18(1):214.
[31]
Petkov V, Jeong I K, Chung J S, Thorpe M F, Kycia S, Billinge S J L. Phys. Rev. Lett., 1999,83(20):4089.
[32]
Tucker M G, Dove M T, Keen D A. J. Phys.: Condens. Matter, 2000,12(26):L425.
[33]
Chapman K W, Chupas P J, Kepert C J. J. Am. Chem. Soc., 2005,127(44):15630. https://www.ncbi.nlm.nih.gov/pubmed/16262430

doi: 10.1021/ja055197f     URL     pmid: 16262430
[34]
Tucker M G, Goodwin A L, Dove M T, Keen D A, Wells S A, Evans J S O. Phys. Rev. Lett., 2005,95(25):255501. https://www.ncbi.nlm.nih.gov/pubmed/16384466

URL     pmid: 16384466
[35]
Bridges F, Keiber T, Juhas P, Billinge S J L, Sutton L, Wilde J, Kowach G R. Phys. Rev. Lett., 2014,112(4):045505. https://www.ncbi.nlm.nih.gov/pubmed/24580469

doi: 10.1103/PhysRevLett.112.045505     URL     pmid: 24580469
[36]
Hu L, Chen J, Fan L, Ren Y, Rong Y, Pan Z, Deng J, Yu R, Xing X. J. Am. Chem. Soc., 2014,136(39):13566. daa9b63b-1f41-4455-b160-c3a80f51b6c8http://dx.doi.org/10.1021/ja5077487

doi: 10.1021/ja5077487     URL    
[37]
Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M, Shamoto S. Phys. Rev. Lett., 2008,101(20):205901. https://www.ncbi.nlm.nih.gov/pubmed/19113356

doi: 10.1103/PhysRevLett.101.205901     URL     pmid: 19113356
[38]
Palomares R I, McDonnell M T, Yang L, Yao T, Szymanowski J E S, Neuefeind J, Sigmon G E, Lian Jie, Tucker M G, Wirth B D, and Lang M. Phys. Rev. Mater., 2019,3(5):053611.
[39]
Petkov V, Billinge S J L, Heising J, Kanatzidis M G. J. Am. Chem. Soc., 2000,122(47):11571. https://pubs.acs.org/doi/10.1021/ja002048i

doi: 10.1021/ja002048i     URL    
[40]
Gilbert B, Huang F, Zhang H, Waychunas G A, Banfield J F. Science, 2004,305(5684):651. https://www.ncbi.nlm.nih.gov/pubmed/15232073

doi: 10.1126/science.1098454     URL     pmid: 15232073
[41]
Billinge S J L, Levin I. Science, 2007,316(5824):561. https://www.ncbi.nlm.nih.gov/pubmed/17463280

doi: 10.1126/science.1135080     URL     pmid: 17463280
[42]
Juhás P, Cherba D M, Duxbury P M, Punch W F, Billinge S J L. Nature, 2006,440(7084):655. https://www.ncbi.nlm.nih.gov/pubmed/16572167

doi: 10.1038/nature04556     URL     pmid: 16572167
[43]
Li Q, Zhu H, Zheng L, Fan L, Wang N, Rong Y, Ren Y, Chen J, Deng J, Xing X. Nano Lett., 2017,17(12):7892. https://www.ncbi.nlm.nih.gov/pubmed/29161048

doi: 10.1021/acs.nanolett.7b04219     URL     pmid: 29161048
[44]
Li Q, Zhu H, Zheng L, Liu H, Ren Y, Wang N, Chen J, Deng J, Xing X. Inorg. Chem., 2018,57(17):10494. https://www.ncbi.nlm.nih.gov/pubmed/30132659

doi: 10.1021/acs.inorgchem.8b01845     URL     pmid: 30132659
[45]
Zhu H, Yang C, Li Q, Ren Y, Neuefeind J C, Gu L, Liu H, Fan L, Chen J, Deng J, Xing X. Nat. Commun., 2018,9(1):1. https://www.ncbi.nlm.nih.gov/pubmed/29317637

doi: 10.1038/s41467-017-02088-w     URL     pmid: 29317637
[46]
Zhu H, Li Q, Yang C, Zhang Q, Ren Y, Gao Q, Wang N, Lin K, Deng J, Chen J, Gu L, Hong J, Xing X. J. Am. Chem. Soc., 2018,140(24):7403. https://www.ncbi.nlm.nih.gov/pubmed/29865794

doi: 10.1021/jacs.8b03232     URL     pmid: 29865794
[47]
Bréger J, Dupré N, Chupas P J, Lee P L, Proffen T, Parise J B, Grey C P. J. Am. Chem. Soc., 2005,127(20):7529. https://www.ncbi.nlm.nih.gov/pubmed/15898804

doi: 10.1021/ja050697u     URL     pmid: 15898804
[48]
Key B, Morcrette M, Tarascon J M, Grey C P. J. Am. Chem. Soc., 2011,133(3):503. https://www.ncbi.nlm.nih.gov/pubmed/21171582

doi: 10.1021/ja108085d     URL     pmid: 21171582
[49]
Allan P K, Griffin J M, Darwiche A, Borkiewicz O J, Wiaderek K M, Chapman K W, Morris A J, Chupas P J, Monconduit L, Grey C P. J. Am. Chem. Soc., 2016,138(7):2352. https://www.ncbi.nlm.nih.gov/pubmed/26824406

doi: 10.1021/jacs.5b13273     URL     pmid: 26824406
[50]
Stratford J M, Mayo M, Allan P K, Pecher O, Borkiewicz O J, Wiaderek K M, Chapman K W, Pickard C J, Morris A J, Grey C P. J. Am. Chem. Soc., 2017,139(21):7273. https://www.ncbi.nlm.nih.gov/pubmed/28471174

doi: 10.1021/jacs.7b01398     URL     pmid: 28471174
[51]
Saha D, Bøjesen E D, Jensen K M Ø, Dippel A C, Iversen B B. J. Phys. Chem. C, 2015,119(23):13357.
[52]
Zhu H, Li Q, Ren Y, Gao Q, Chen J, Wang N, Deng J, Xing X. Small, 2018,14(13):1703974.
[53]
Li W, Harrington R, Tang Y, Kubicki J D, Aryanpour M, Reeder R J, Parise J B, Phillips B L. Environ. Sci. Technol., 2011,45(22):9687. https://www.ncbi.nlm.nih.gov/pubmed/21988151

URL     pmid: 21988151
[1] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.