English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 320-330 DOI: 10.7536/PC190629 前一篇   后一篇

• •

表面超疏水对摩擦学性能的影响:机理、现状与展望

郭永刚**(), 朱亚超, 张鑫, 罗冰鹏   

  1. 河南工业大学机电工程学院 郑州 450001
  • 收稿日期:2019-06-27 出版日期:2020-02-15 发布日期:2019-12-19
  • 通讯作者: 郭永刚
  • 基金资助:
    国家自然科学基金项目(51775169); 国家自然科学基金项目(U1404516); 国家自然科学基金项目(U1604253); 河南省自然科学基金项目(162300410053); 河南工业大学青年骨干教师培育计划、河南省高等学校青年骨干教师培养计划(2016GGJS-067); 河南省高等学校重点科研项目(17A430014); 河南省科技攻关计划项目(142102210413)

Effects of Superhydrophobic Surface on Tribological Properties: Mechanism, Status and Prospects

Yonggang Guo**(), Yachao Zhu, Xin Zhang, Bingpeng Luo   

  1. School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
  • Received:2019-06-27 Online:2020-02-15 Published:2019-12-19
  • Contact: Yonggang Guo
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(51775169); National Natural Science Foundation of China(U1404516); National Natural Science Foundation of China(U1604253); Natural Science Foundation of Henan Province(162300410053); Training Program of Young Key Teachers in Henan University of Technology, Training Program of Young Key Teachers in Colleges and Universities in Henan Province(2016GGJS-067); Key Scientific Research Projects of Henan Colleges and Universities(17A430014); Henan Province Science and Technology Research Projects(142102210413)

超疏水表面由于极端的非润湿特性,在减阻、耐磨、防腐蚀、防结冰和自清洁等领域有着极为广泛的潜在应用。表面粗糙结构和低表面自由能是形成超疏水表面的两个决定因素,也是超疏水表面具有优异的摩擦学性能的主要原因。本文主要对近年来超疏水表面在摩擦学领域的研究进行总结。首先分析了超疏水表面摩擦学的相关理论,然后重点阐述了超疏水表面在摩擦学领域的研究现状,探讨了影响超疏水表面摩擦学性能的因素和作用机理,并对耐磨超疏水表面和超滑表面的摩擦学研究进行了分析。最后提出了超疏水表面摩擦学研究应该关注的重点和方向。本综述旨在引起更多学者对超疏水表面摩擦学研究的关注,对于扩大超疏水表面的应用领域具有重要的理论价值和现实意义。

Due to its extreme non-wetting properties, superhydrophobic surface has a wide range of potential applications in the fields of drag reduction, wear resistance, anti-corrosion, anti-icing, self-cleaning, etc. Surface roughness and low surface free energy are the two determinants of forming superhydrophobic surface and the main reasons of excellent tribological properties of superhydrophobic surface. In this paper, the research on superhydrophobic surface in the field of tribology in recent years is summarized. Firstly, the related theories of the tribology of superhydrophobic surface are analyzed. Then the research status of superhydrophobic surface in the field of tribology is emphatically expounded, and the factors affecting the tribological properties of superhydrophobic surface and its mechanism are discussed. In addition, the tribological study of wear-resistant superhydrophobic surface and slippery liquid infused porous surface(SLIPS) are also analyzed. Finally, the paper puts forward the focus and direction of tribology research on superhydrophobic surface. This review, which has important theoretical and practical significance for expanding the application field of superhydrophobic surface, aims to attract more scholars’ attention to the tribological study of superhydrophobic surface.

()
图1 弯月面形成示意图[45]
Fig.1 Diagram of meniscus formation[45]
图2 弹性介质和粗糙刚性平面接触[48]
Fig.2 Contact between elastic medium and rough rigid plane[48]
图3 超疏水表面减轻磨粒磨损示意图[49]
Fig.3 The illustration of superhydrophobic surface that can reduce abrasive wear[49]
图4 光滑试样和微结构试样的磨损形貌图[53](图中的标尺均为100 μm)
Fig.4 Wear morphologies of smooth samples and microstructural samples[53](The scales in the figure are all 100 μm)
图5 HIPS 纳米复合涂层的表面粗糙度测量(a)和摩擦系数随二氧化硅浓度的变化情况(b)[55]
Fig.5 Surface roughness measurement(a) and friction coefficient variation with silica concentration(b) of HIPS nanocomposite coating[55]
图6 试样的摩擦系数曲线:(a)裸钢,(b)纹理钢,(c)改性裸钢和(d)改性纹理钢[57]
Fig.6 The friction coefficient curves of samples:(a) bare steel,(b) textured steel,(c) modified bare steel and(d) modified textured steel[57]
图7 钛合金空白试样及网格和点阵微结构试样在纯水润滑(a)和海水润滑(b)中的摩擦系数曲线图[63]
Fig.7 Friction coefficient curves of blank, grid microstructure and dot microstructure titanium alloy specimens in pure water lubrication(a) and sea water lubrication(b)[63]
图8 FG含量为0、50%和100%的PI/FG纳米复合涂层在磨损后的SEM图像(a)、(b)、(c)以及油润滑条件下所有涂层的摩擦系数和磨损率的直方图(d)[65]
Fig.8 SEM images(a),(b),(c) of PI/FG nanocomposite coating with FG content of 0, 50% and 100% after wear, and histogram of friction coefficient and wear rate of all coatings under oil lubrication conditions(d)[65]
图9 锡青铜和轴承钢试样的摩擦系数随载荷(a、b)和滑动速度(c、d)的变化情况。1代表光滑表面,2、3和4分别代表微结构直径与相邻微结构中心距之比为1∶3、1∶2和1∶4的表面[53]
Fig.9 The friction coefficient of tin bronze and bearing steel samples varies with loading(a, b) and sliding speed(c, d). Where, 1 representing smooth surface, 2, 3 and 4 representing surface whose ratio of microstructure diameter to the center distance of adjacent microstructures is 1∶3, 1∶2 and 1∶4, respectively[53]
图10 超疏水表面摩擦系数随时间变化的曲线[66]
Fig.10 The friction coefficient curve of superhydrophobic surface varying with time[66]
图11 镁合金基底(a)、微弧氧化层(b)和经自组装分子膜修饰的微弧氧化层(c)的磨痕形貌[72]
Fig.11 Wear morphology of magnesium alloy substrate(a), micro-arc oxide layer(b) and micro-arc oxide layer modified by self-assembled molecular film(c)[72]
图12 用未作处理(a)、低表面能溶液(b)和涂覆SiO2(c)三种修饰方法处理过的光滑表面、网格表面和点阵表面经磨损后产生的磨痕图①、②和③[73]
Fig.12 Wear pattern(①, ②, ③) of smooth surface, grid surface and dot surface treated by three modification methods: untreated(a), low surface energy solution(b) and coated SiO2 (c)[73]
图13 砂纸磨损试验示意图[77]
Fig.13 Schematic diagram of sandpaper wear test[77]
图14 用刀划痕试验(b1~b8)来验证具有涂层的载玻片的超疏水性:实验前(a1)和实验后(a2),以及每次刮刀试验后的水接触角图(c)[79]
Fig.14 The superhydrophobicity of coated glass slides is verified by knife scratch test(b1~b8): pre-test(a1) and post-test(a2), and water contact angle diagram after each knife scratch test(c)[79]
表1 超疏水表面摩擦学性能测试常用的实验条件
Table 1 Experimental conditions commonly used for testing the tribological properties of superhydrophobic surfaces
图15 荷叶表面与超疏水结构示意图(a)和猪笼草叶片与超滑表面结构示意图(b)[81]
Fig.15 Lotus leaf surface and schematic diagram of superhydrophobic surface(a) and pitcher grass leaf blade and schematic diagram of SLIPS(b)[81]
[1]
邵静静(Shao J J), 蔺存国(Lin C. G), 张金伟(Zhang J W), 张桂玲(Zhang G L) . 涂料工业 (Paint & Coatings Industry), 2008,38(10):39.
[2]
高雪峰(Gao X F), 江雷(Jiang L) . 物理 (Physics), 2006,35(7):559.
[3]
王政(Wang Z), 李田(Li T), 李明(Li M), 张继业(Zhang J Y) . 河北科技大学学报 (Journal of Hebei University of Science and Technology), 2017,38(4):325.
[4]
Bhushan B . Phil. Trans. R. Soc. A, 2009,367:1445. https://www.ncbi.nlm.nih.gov/pubmed/19324719

doi: 10.1098/rsta.2009.0011     URL     pmid: 19324719
[5]
Neinhuis W B . Planta, 1997,202(1):1.
[6]
Neinhuis C, Barthlott W . Annals of Botany(London), 1997,79(6):0.
[7]
Bai X G, Shen Y Q, Tian H F, Yang Y X, Feng H, Li J . Separation and Purification Technology, 2019,210:402.
[8]
Mahdi S S S, Brant J A . Separation and Purification Technology, 2019,210:587.
[9]
Wang J T, Han F L, Chen Y H, Wang H F . Separation and Purification Technology, 2019,209:119.
[10]
Wang J T, Wang H F . Journal of Colloid and Interface Science, 2019,534:228. https://www.ncbi.nlm.nih.gov/pubmed/30227379

doi: 10.1016/j.jcis.2018.09.028     URL     pmid: 30227379
[11]
Lin B, Chen J, Li Z T, He F A, Li D H . Surface & Coatings Technology, 2019,359:216.
[12]
Wang H C, Yang J B, Liu X P, Tao Z G., Wang Z W, Yue R R . J. Mater. Sci., 2019,54:1255.
[13]
Zhou Q Q, Yan B B, Xing T L, Chen G Q . Carbohydrate Polymers, 2019,203:1. https://www.ncbi.nlm.nih.gov/pubmed/30318191

doi: 10.1016/j.carbpol.2018.09.025     URL     pmid: 30318191
[14]
Sun X, Xue B, Tian Y Z, Qin S H, Xie L . Applied Surface Science, 2018,462:633.
[15]
Liu H, Xie W Y, Song F, Wang X L, Wang Y Z . Chemical Engineering Journal, 2019,369:1040.
[16]
Wang X K, Zeng J, Yu X Q, Liang C H, Zhang Y F . Applied Surface Science, 2019,465:986.
[17]
Foorginezhad S, Zerafat M M . Applied Surface Science, 2019,464:458.
[18]
Chen H, Jin Y Y, Lei L, Ding X X, Li X, Wang Y Q, Sun L, Shen L Y, Yang M, Wang B L . Applied Surface Science, 2018,462:149.
[19]
Jiang C, Liu W Q, Yang M P, Liu C H, He S, Xie Y K, Wang Z F . Colloids and Surfaces A, 2018,559:235.
[20]
Li H, Yu S R, Hu J H, Liu E Y . Thin Solid Films, 2018,666:100.
[21]
Yao W H, Li L, Li O L, Cho Y W, Jeong M Y, Cho Y R . Chemical Engineering Journal, 2018,352:173.
[22]
Zhang B B, Zhu Q J, Li Y T, Hou B R . Chemical Engineering Journal, 2018,352:625.
[23]
Wang Q, Chen G X, Tian J F, Yu Z H, Deng Q J, Yu M G . Materials Letters, 2018,230:84. https://linkinghub.elsevier.com/retrieve/pii/S0167577X18311327

doi: 10.1016/j.matlet.2018.07.090     URL    
[24]
Qu M N, Ma X R, Hou L G, Yuan M J, He J, Xue M H, Liu X R, He J M . Applied Surface Science, 2018,456:737.
[25]
Zhu X, Zhang Z, Song Y . Journal of the Taiwan Institute of Chemical Engineers, 2017,71:421.
[26]
Sehati S, Kouhi M, Mosayebi J, Rezaei T, Mosayebi V . Journal of Building Engineering, 2017,13:305.
[27]
Tong W, Xiong D S, Wang N, Yan C Q, Tian T . Surface & Coatings Technology, 2018,352:609.
[28]
Liu Y B, Gu H M, Jia Y, Liu J, Zhang H, Wang R M, Zhang B L, Zhang H P, Zhang Q Y . Chemical Engineering Journal, 2019,356:318.
[29]
Wang N, Tang L L, Cai Y F, Tong W, Xiong D S . Colloids and Surfaces A, 2018,555:290.
[30]
Ren W W, Chen Yu, Mu X J, Khoo B C, Zhang F, Xu Y . International Journal of Thermal Sciences, 2018,130:240.
[31]
Tuo Y J, Chen W P, Zhang H F, Li P J, Liu X W . Applied Surface Science, 2018,446:230.
[32]
Li D K, Guo Z G . Applied Surface Science, 2018,443:548.
[33]
Dilip D, Kumar S V, Bobji M S, Govardhan R N . International Journal of Heat and Mass Transfer, 2018,119:551.
[34]
Aziz H, Tafreshi H V . International Journal of Multiphase Flow, 2018,98:128.
[35]
Zhai M J, Gong Y F, Chen X Y, Xiao T H, Zhang G P, Xu L H, Li H . Surface & Coatings Technology, 2017,328:115.
[36]
Modak C D, Bhaumik S K . Colloids and Surfaces A, 2017,529:998.
[37]
Wang C Z, Tang F, Hao P F, Li Q, Wang X H . Microsyst. Technol., 2017,23:3033.
[38]
Qin L G, Zhao W J, Hou H, Jin Y C, Zeng Z X, Wu X D, Xue Q J . RSC Adv., 2014,4:60307.
[39]
Webb H K, Crawford R J, Ivanova E P . Advances in Colloid and Interface Science, 2014,210(8):58.
[40]
Holmberg K, Andersson P, Erdemir A . Tribology International, 2012,47:221. https://linkinghub.elsevier.com/retrieve/pii/S0301679X11003501

doi: 10.1016/j.triboint.2011.11.022     URL    
[41]
Elkhyat A, Courderot-Masuyer C, Gharbi T, Humbert P . Skin Research & Technology, 2010,10(4):215. https://www.ncbi.nlm.nih.gov/pubmed/15536654

doi: 10.1111/j.1600-0846.2004.00085.x     URL     pmid: 15536654
[42]
万轶(Wan Y), 李建亮(Li J L), 熊党生(Xiong D S) . 表面技术 (Surface Technology), 2018,47(6):0195.
[43]
万勇(Wan Y), 王中乾(Wang Z Q), 刘义芳(Liu Y F) . 无机材料学报 (Journal of Inorganic Materials), 2012,27(4):390.
[44]
Johnson K L, Kendall K, Roberts A D . Proceedings of The Royal Society A, 1971,324(1558):301.
[45]
Jung Y C, Bhushan B . Nanotechnology, 2006,17(19):4970.
[46]
温诗铸(Wen S Z), 黄平(Huang P) . 摩擦学原理(Principles of Tribology). 北京: 清华大学出版社 (Beijing: Tsinghua University Press), 2002. 256.
[47]
钱林茂(Qian L M), 田煜(Tian W), 温诗铸(Wen S Z) . 纳米摩擦学(Nano Tribology). 北京: 科学出版社 (Beijing: Science Press), 2013. 69.
[48]
瓦伦丁·波波夫(Popov V L) . 接触力学与摩擦学的原理及其应用 (Physical principles and applications of contact mechanics and friction). 北京: 清华大学出版社 (Beijing: Tsinghua University Press), 2011. 25.
[49]
Zhong Y H, Zheng L, Gao Y H, Liu Z N . Tribology International, 2019,129:151.
[50]
Lin N M, Li D L, Zou J J, Xie R Z, Wang Z H, Tang B . Materials, 2018,11(4):487.
[51]
Moravcikova J, Moravcik R, Kusy M, Necpal M . JMEPEG, 2018,27:5417.
[52]
Bonse J, Kirner S V, Griepentrog M, Spaltmann D, Kruger J . Materials, 2018,11(5):801.
[53]
王莉(Wang L), 严诚平(Yan C P), 王权岱(Wang Q D), 郭方亮(Guo F L), 郝秀清(Hao X Q) . 华中科技大学学报 (J. Huazhong Univ. of Sci. & Tech.), 2012,40:21.
[54]
Sarbada S. Shin Y C . Applied Surface Science. 2017,405, 465.
[55]
Masood M T, Heredia-Guerrero J A, Ceseracciu L, Palazon F, Athanassiou A, Bayer I S . Chemical Engineering Journal, 2017,322:10. https://linkinghub.elsevier.com/retrieve/pii/S1385894717305351

doi: 10.1016/j.cej.2017.04.007     URL    
[56]
Wan Y, Wang Z Q, Xu Z, Liu C S, Zhang J Y . Applied Surface Science, 2011,257:7486. 77979ef3-b0b7-443b-b8d0-df18b6c432a9 http://dx.doi.org/10.1016/j.apsusc.2011.03.060

doi: 10.1016/j.apsusc.2011.03.060     URL    
[57]
Zhang H M, Yang J, Chen B B, Liu C, Zhang M S, Li C S . Applied Surface Science, 2015,359:905.
[58]
Wang Y, Wang L P, Wang S C, Wood R J K, Xue Q J . Surface & Coatings Technology, 2012,206:2258.
[59]
Yang G B, Chen X H, Ma K D, Yu L G, Zhang P Y . Surface & Coatings Technology, 2011,205:3365.
[60]
王峰(Wang F), 孙士飞(Sun S F), 杨霞(Yang X), . 材料保护 (Material Protection), 2015,48(1):0054.
[61]
莫梦婷(Mo M T), 赵文杰(Zhao W J), 陈子飞(Chen Z F), 曾志翔(Zeng Z X), 乌学东(Wu X d), 薛群基(Xue Q J) . 摩擦学学报 (Tribology), 2015,35(4):0505.
[62]
顾长捷(Gu C J) . 数字海洋与水下攻防 (Digital Ocean & Underwater Warfare), 2018,1(03):3.
[63]
连峰(Lian F), 臧路苹(Zang L P), 项秋宽(Xiang Q K), 张会臣(Zhang H C) . 金属学报 (Acta Metallurgica Sinica), 2016,52(5):592.
[64]
连峰(Lian F), 王增勇(Wang Z Y), 张会臣(Zhang H C) . 机械工程学报 (Journal of Mechanical Engineering), 2016,52(11):115.
[65]
Ye X Y, Liu X H, Yang Z G, Wang Z F, Wang H D, Wang J Q, Yang S R . Composites Part A: Applied Science and Manufacturing, 2016,81:282.
[66]
张倩倩(Zhang Q Q), 漆雪莲(Qi X C), 张会臣(Zhang H C) . 表面技术 (Surface Technology), 2018,47(11):112.
[67]
Zhang F, Qian H C, Wang L T, Wang Z, Du C W, Li X G, Zhang D W . Surface and Coatings Technology, 2018,341:15.
[68]
Zhang Y, Ren F, Liu Y . Applied Surface Science, 2018,436:405.
[69]
郭永刚(Guo Y G), 张鑫(Zhang X), 耿铁(Geng T),吴海宏(Wu H H), 徐琴(Xu Q), 王迎春(Wang Y C), 栗正新(Li Z X) . 中国表面工程 (China Surface Engineering), 2018,31(5):0063.
[70]
万勇(Wan Y), 张泉(Zhang Q), 李杨(Li, Y) . 无机材料学报 (Journal of Inorganic Materials), 2015,30(3):299.
[71]
Young T J, Jackson J, Roy S, Ceylan H, Sundararajan S . Wear, 2017,376:1713.
[72]
李杰(Li J), 张会臣(Zhang H C), 高玉周(Gao Y Z) . 功能材料 (Functional Materials), 2012,43(22):3063.
[73]
连峰(Lian F), 任洪梅(Ren H M), 管善堃(Guan S K), 张会臣(Zhang H C) . 中国有色金属学报 (The Chinese Journal of Nonferrous Metals), 2015,25(9):2421.
[74]
汪怀远(Wang H Y), 王恩群(Wang E Q), 孟旸(Meng W), 朱艳吉(Zhu Y J) . 材料工程 (Journal of Materials Engineering), 2017,45(1):38.
[75]
Tang Y C, Yang J, Yin L T, Chen B B, Tang H, Liu C, Li C S . Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014,459:261.
[76]
Cheng Y Y, Lu S X, Xu W G, Boukherroub R, Szunerits S, Liang W . Journal of Alloys and Compounds, 2017,723:225.
[77]
Qu M N, Liu S S, He J M, Feng J, Yao Y L, Ma X R, Hou L G, Liu X R . Applied Surface Science, 2017,410:299.
[78]
Huang Q Z, Fang Y Y, Liu P Y, Zhu Y Q, Shi J F, Xu Gang . Chemical Physics Letters, 2018,692:33.
[79]
Cao W T, Liu Y J, Ma M G, Zhu J F . Colloids and Surfaces A, 2017,529:18.
[80]
贺胤(He Y), 胡永茂(Hu Y M), 孙淑红(Sun S H),朱艳(Zhu Y) . 材料科学 (Material Sciences), 2018,8(5):438.
[81]
吴德权(Wu D Q), 张达威(Zhang D W), 刘贝(Liu B), 李晓刚(Li X G) . 表面技术 (Surface Technology), 2019,48(1):0090.
[82]
安光明(An G M), 凌世全(Ling S Q), 王智伟(Wang Z W), 栾琳(Yan L), 吴天准(Wu T Z) . 化学进展 (Progress in Chemistry), 2015,27(12):1705.
[83]
王玉娟(Wang Y J), 宋小闯(Song X C), 陈云飞(Chen Y F) . 东南大学学报 (Journal of Southeast University), 2017,47(2):0259.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[3] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[4] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[5] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[6] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[7] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[8] 田苗苗, 李雪梅, 殷勇, 何涛, 刘金盾. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8): 1033-1041.
[9] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[10] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[11] 阎映弟, 罗能镇, 相咸高, 徐义明, 张庆华, 詹晓力. 防覆冰涂层构建机理及制备[J]. 化学进展, 2014, 26(01): 214-222.
[12] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层: 从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096.
[13] 陈钰, 徐建生, 郭志光. 仿生超疏水性表面的最新应用研究[J]. 化学进展, 2012, 24(05): 696-708.
[14] 斯芳芳, 张靓, 赵宁, 陈莉, 徐坚. 超亲水表面制备方法及其应用[J]. 化学进展, 2011, 23(9): 1831-1840.
[15] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.