English
新闻公告
More
化学进展 2019, Vol. 31 Issue (6): 872-881 DOI: 10.7536/PC181017 前一篇   后一篇

• •

贵金属纳米颗粒的微生物合成

白睿1,2, 田晓春1, 王淑华1,2, 严伟富1, 冮海银1,3, 肖勇1,**()   

  1. 1.中国科学院城市环境研究所 中国科学院城市污染物转化重点实验室 厦门 361021
    2.中国科学院大学 北京 100049
    3.湖南大学环境科学与工程学院 长沙 410082
  • 收稿日期:2018-10-16 出版日期:2019-06-15 发布日期:2019-04-26
  • 通讯作者: 肖勇
  • 作者简介:
  • 基金资助:
    国家自然科学基金项目(51478451); 国家自然科学基金项目(51878640); 中国科学院青年创新促进会(2018344)

Noble Metal Nanoparticles Produced by Microorganism

Rui Bai1,2, Xiaochun Tian1, Shuhua Wang1,2, Weifu Yan1, Haiyin Gang1,3, Yong Xiao1,**()   

  1. 1.CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
  • Received:2018-10-16 Online:2019-06-15 Published:2019-04-26
  • Contact: Yong Xiao
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(51478451); National Natural Science Foundation of China(51878640); Youth Innovation Promotion Association of Chinese Academy of Sciences(2018344)

金属纳米颗粒在材料、催化、医学、环境等众多领域应用广泛,其中,金、银、铂、钯等贵金属的纳米颗粒作为良好的催化剂可提高反应的速率,因此,贵金属纳米颗粒的合成吸引了众多研究者的关注。传统的物理化学法虽能高效、可控地合成贵金属纳米颗粒,但是合成条件苛刻、成本昂贵、且会产生对环境有害的化学物质。因此,探索节能、环保、可持续的绿色合成方法成为纳米合成研究的热点之一。贵金属纳米颗粒的微生物合成法具备绿色合成技术的诸多要素,研究表明某些微生物能将金属盐转化成纳米材料,且微生物繁殖速度快、培养成本低、生长条件温和,从而得到了研究者们的广泛关注。本文归纳总结了目前微生物合成贵金属纳米颗粒的主要研究进展,包括贵金属纳米颗粒可能的合成机制以及尺寸与形貌控制方法,探讨了其在医学、催化、生物传感、环境方面的具体应用,并对贵金属纳米颗粒微生物合成的未来发展进行了展望。

Metal nanoparticles have been widely applied in many fields,including materials, catalysis, medicine, environment, etc. Furthermore, nanoparticles from noble metal, such as gold, silver, platinum, palladium, possess the ability of increasing the efficiency of catalytic reaction. Therefore, the synthesis of noble metal nanoparticles by microorganisms has attracted the attention of many researchers. Although traditional physical and chemical methods can synthesize nanoparticles efficiently and controllably, these methods are complicated and expensive, in addition to the wide use of hazardous chemicals. Therefore, exploring energy-saving, environmentally friendly and sustainable green synthesis method for synthesizing nano-materials is continuously attracting interests in this field. The microbial synthesis of noble metal nanoparticles conforms to the requirements of green synthesis technology, and researches have shown that many microorganisms can convert metal ions into nano-materials. Besides, microorganisms can be grown in mild condition cheaply and fast, so microbial synthesis has been widely concerned in the field of nanometer research. This review summarizes progress of microbial synthesis of noble metal nanoparticles, including the possible synthesis mechanisms and the control of size and shape. Meanwhile, the specific applications of microbial sourced nanoparticles in medicine, catalysis, biosensing and environment are discussed, and the future development of microbial nanomaterials synthesis is further prospected.

()
图1 Shewanella oneidensis MR-1合成钯纳米颗粒前(A)后(B)的TEM照片[19]
Fig. 1 TEM images of a Shewanella oneidensis MR-1 cell(A) before and (B) after the bio-reduction of Pd(Ⅱ)[19].Copyright 2018, Royal Society of Chemistry.
表1 合成纳米材料微生物类群以及合成的纳米材料
Table 1 List of the microorganisms employed for the synthesis of metal nanoparticles and nanoparticles synthesized
Microbial species Nanoparticle type Size(nm) Shape Way of
synthesis
ref
Bacteria
Rhodopseudomonas capsulata Au 10-20 Spherical Extracellular 45
Rhodococcus sp. Au 5-15 Intracellular 46
Bacillus subtilis 168 Au 5-25 Octahedral Intracellular 15
Bacillus methylotrophicus Ag 10-30 Spherical Extracellular 47
Shewanella algae Pt ~5 Intracellular 48
Shewanella oneidensis MR-1 Pd ~6.2 Spherical Intracellular 19
Thermomonospora sp. Au ~8 Spherical Extracellular 49
Streptomyces fulvissimus Au 20-50 Spherical, Triangular Extracellular 21
Streptomyces sp. LK3 Ag ~5 Spherical 50
Pseudomonas deceptionensis Ag 10-30 Spherical Extracellular 51
Pseudomonas stutzeri up to 200 Triangular, Hexagonal, Spherical Periplasmic space 52
Pseudomonas stutzeri AG259 Ag 35-46 Spherical Extracellular 8
Plectonema boryanum UTEX 485 Pt 30-300 Spherical, Chains, Dendritic 53
Desulfovibrio desulfuricans Pd ~50 Intracellular 54
Fungi
Fusarium oxysporum Au 20-40 Spherical, Triangular Extracellular 55
Fusarium semitectum Ag, Au-Ag 10-60 Spherical Extracellular 27
Fusarium xysporum sp. Pt 10-50 Triangle, Hexagons, Square, Extracellular 56
Verticillium sp. Au 12-28 Spherical Intracellular 23
Volvariella volvacea Au, Ag, Au-Ag 20-150 Spherical, Hexagonal Extracellular 57
Cell filtrate
Bacillus licheniformis Ag ~40 58
Duddingtonia flagrans Ag 11-38 Spherical 30
Nigrospora oryzae Au 6-18 Spherical, Triangular 33
Pseudomonas aeruginosa Au 15-30 Spherical 31
Rhodopseudomonas capsulata Au 10-20 Spherical, Nanowires 32
Staphylococcus aureus Ag 160-180 Spherical 59
图2 微生物合成纳米颗粒的机理[64]
Fig. 2 Mechanism of microbial synthesis of nanoparticles[64]. Copyright 2016, Springer Nature.
图3 Streptomyces sp. LK3胞内合成银纳米颗粒的示意图[65]
Fig. 3 Schematic diagram of microbial synthesis of nanoparticles by Streptomyces sp. LK3[65]
图4 尖孢镰刀菌(Fusarium oxysporum)合成银纳米粒子的假设机制[70]
Fig. 4 Hypothetical mechanisms of silver nanoparticle biosynthesis by Fusarium oxysporum[70].Reproduced with permission from BioMed Central Ltd.
图5 用于检测香草醛的生物传感器示意图(WE:玻碳电极(GC);RE:饱和甘汞电极;CE:铂丝电极;CDA:纤维素二乙酸酯)
Fig. 5 Schematic diagram of biological sensor for detecting vanillin. WE: Glassy carbon electrode; RE: Saturated calomel electrode; CE: Platinum wire;CDA: Cellulose diacetate; GC: Glassy carbon electrode
[1]
Marcial M M, Pleixats R . Acc. Chem. Res., 2003,36(8):638. https://www.ncbi.nlm.nih.gov/pubmed/12924961

doi: 10.1021/ar020267y     URL     pmid: 12924961
[2]
Kramer N, Birk H, Jorritsma J, Schonenberger C . Appl. Phys. Lett., 1995,66(11):1325. http://aip.scitation.org/doi/10.1063/1.113230

doi: 10.1063/1.113230     URL    
[3]
Silvis C N, Hagen C W, Kruit P, Maj V S, Groen H B . Appl. Phys. Lett., 2003,82(20):3514.
[4]
Wang X, Zhuang J, Peng Q, Li Y . Nature, 2005,437(7055):121. https://www.ncbi.nlm.nih.gov/pubmed/16136139

doi: 10.1038/nature03968     URL     pmid: 16136139
[5]
Zhang S . Nat. Biotechnol., 2003,21(10):1171. https://www.ncbi.nlm.nih.gov/pubmed/14520402

doi: 10.1038/nbt874     URL     pmid: 14520402
[6]
Oxana K, Rasika D H, Boris K, Betsabee O P, Victor J P . Trends Biotechnol., 2013,31(4):240. https://www.ncbi.nlm.nih.gov/pubmed/23434153

doi: 10.1016/j.tibtech.2013.01.003     URL     pmid: 23434153
[7]
Cueva M, Horsfall L . Microb. Biotechnol., 2017,10(5):1212. https://www.ncbi.nlm.nih.gov/pubmed/28771979

doi: 10.1111/1751-7915.12788     URL     pmid: 28771979
[8]
Tanja K J, Joerger R, Olsson E, Granqvist C G . Trends Biotechnol., 2001,19(1):15. https://www.ncbi.nlm.nih.gov/pubmed/11146098

doi: 10.1016/s0167-7799(00)01514-6     URL     pmid: 11146098
[9]
Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S R, Khan M I, Parishcha R, Ajaykumar P V, Alam M, Kumar R, Sastry M . Nano Lett., 2001,1(10):515.
[10]
Kannan B N, Natarajan S . Adv. Colloid Interface Sci., 2010,156(1):1.
[11]
Mandal D, Bolander M E, Mukhopadhyay D, Sarkar G, Mukherjee P . Appl. Microbiol. Biotechnol., 2006,69(5):485. https://www.ncbi.nlm.nih.gov/pubmed/16317546

doi: 10.1007/s00253-005-0179-3     URL     pmid: 16317546
[12]
Mohanpuria P, Rana N, Yadav S . J. Nanopart. Res., 2008,10(3):507.
[13]
Hulkoti N, Taranath T . Colloid Surf. B -Biointerfaces, 2014,121(9):474. https://linkinghub.elsevier.com/retrieve/pii/S0927776514002628

doi: 10.1016/j.colsurfb.2014.05.027     URL    
[14]
Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E, Winge D R . Nature, 1989,338(6216):596. https://www.ncbi.nlm.nih.gov/pubmed/2648161

doi: 10.1038/338594a0     URL     pmid: 2648161
[15]
Southam G, Beveridge T J . Geochim. Cosmochim. Acta, 1994,58(20):4517.
[16]
Reith F, Etschmann B, Grosse C, Moors H, Benotmane M A, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Gema M C, George G, Nies D H, Mergeay M, Pring A, Southam G, Brugger J . Proc. Natl. Acad. Sci. U. S. A., 2009,106(42):17757. https://www.ncbi.nlm.nih.gov/pubmed/19815503

doi: 10.1073/pnas.0904583106     URL     pmid: 19815503
[17]
Sharma V K, Yngard R A, Lin Y . Adv. Colloid Interface Sci., 2009,145(1):83.
[18]
Klaus T, Joerger R, Olsson E, Granqvist C G . Proc. Natl. Acad. Sci. U. S. A., 1999,96(24):13611. https://www.ncbi.nlm.nih.gov/pubmed/10570120

doi: 10.1073/pnas.96.24.13611     URL     pmid: 10570120
[19]
Wu R, Tian X, Xiao Y, Ulstrup J, Christensen H E M, Zhao F, Zhang J . J. Mater. Chem. A, 2018,6(12):10555. http://xlink.rsc.org/?DOI=C8TA90130A

doi: 10.1039/C8TA90130A     URL    
[20]
Corte S D, Hennebel T, Fitts J, Sabbe T, Bliznuk V, Verschuere S, Lelie D, Verstraete W, Boon N . Environ. Sci. Technol., 2011,45(19):8506. https://www.ncbi.nlm.nih.gov/pubmed/21877727

doi: 10.1021/es2019324     URL     pmid: 21877727
[21]
Nejad M S, Hosein S B . Nanomedicine-UK, 2014,2(2):153.
[22]
Dehnad A, Hamedi J, Derakhshan F K, Abuşov R . IEEE Trans. Nanobiosci., 2015,14(4):393. http://ieeexplore.ieee.org/document/7008573/

doi: 10.1109/TNB.2014.2377232     URL    
[23]
Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S R, Khan M I, Ramani R, Parischa R, Ajayakumar P V, Alam M, Sastry M, Kumar R . Angew. Chem. Int. Edit., 2001,40(19):3585. https://www.ncbi.nlm.nih.gov/pubmed/11592189

doi: 10.1002/1521-3773(20011001)40:19【-逻*辑*与-】lt;3585::aid-anie3585【-逻*辑*与-】gt;3.0.co;2-k     URL     pmid: 11592189
[24]
Gericke M, Pinches A . Gold Bull., 2006,39(1):22. a517b3f6-b1c5-4a55-8143-e45cf7207601http://www.springerlink.com/content/e341459hjuk61k81/

doi: 10.1007/BF03215529     URL    
[25]
Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I, Kumar R, Sastry M . ColloidSurf. B -Biointerfaces, 2003,28(4):313.
[26]
Binupriya A R, Sathishkumar M, Yun S I . Acta Pol. Pharm., 2010,70(4):597. https://www.ncbi.nlm.nih.gov/pubmed/23923383

URL     pmid: 23923383
[27]
Dasaratrao S B, Salimath B, Deshpande R, Dhondojirao B M, Krishnamurthy P B, Venkataraman A . Sci. Technol. Adv. Mater., 2008,9(3):035012. https://www.ncbi.nlm.nih.gov/pubmed/27878009

doi: 10.1088/1468-6996/9/3/035012     URL     pmid: 27878009
[28]
Govender Y, Riddin T, Gericke M, Whiteley C G . Biotechnol. Lett., 2009,31(1):95. https://www.ncbi.nlm.nih.gov/pubmed/18773149

doi: 10.1007/s10529-008-9825-z     URL     pmid: 18773149
[29]
Govender R Y, Grewar T, Gericke M, Whiteley C . J. Nanopart. Res., 2009,12(1):261.
[30]
Costa L S, Oliveira J P, Keijok W J, Silva A R, Aguiar A, Guimarães M, Ferraz C, Araújo J, Tobias F L, Braga F . Int. J. Nanomed., 2017,12:6373. https://www.dovepress.com/international-journal-of-nanomedicine-journal

doi: 10.2147/IJN     URL    
[31]
Husseiny M, Elaziz M A, Badr Y, Mahmoud M . Spectroc. Acta Pt. A -Molec. Biomolec. Spectr., 2007,67(3):1003.
[32]
He S, Zhang Y, Guo Z, Ning G . Biotechnol. Prog., 2008,24(2):476. https://www.ncbi.nlm.nih.gov/pubmed/18293997

doi: 10.1021/bp0703174     URL     pmid: 18293997
[33]
Kar P K, Sanatan M, Saswati S, Tandon V, Acharya K . PLoS One, 2014,9(1):e84693. https://www.ncbi.nlm.nih.gov/pubmed/24465424

doi: 10.1371/journal.pone.0084693     URL     pmid: 24465424
[34]
Binupriya A R, Sathishkumar M, Kuppusamy V, Yun S I . J. Hazard. Mater., 2010,177(1/3):539. https://www.ncbi.nlm.nih.gov/pubmed/20056324

doi: 10.1016/j.jhazmat.2009.12.066     URL     pmid: 20056324
[35]
Kang F, Alvarez P J, Zhu D . Environ. Sci. Technol., 2014,48(1):316. https://www.ncbi.nlm.nih.gov/pubmed/24328348

doi: 10.1021/es403796x     URL     pmid: 24328348
[36]
Li S W, Zhang X, Sheng G P . Environ. Sci. Pollut. Res., 2016,23(9):8627. https://www.ncbi.nlm.nih.gov/pubmed/26797954

doi: 10.1007/s11356-016-6105-7     URL     pmid: 26797954
[37]
Li S W, Sheng G P, Cheng Y Y, Yu H Q . Sci. Rep., 2016,6:39098. https://www.ncbi.nlm.nih.gov/pubmed/27991531

doi: 10.1038/srep39098     URL     pmid: 27991531
[38]
Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen H E M, Ulstrup J, Zhao F . Sci. Adv., 2017,3(7):e1700623. https://www.ncbi.nlm.nih.gov/pubmed/28695213

doi: 10.1126/sciadv.1700623     URL     pmid: 28695213
[39]
Xiao Y, Zhao F . Curr. Opin. Electrochem., 2017,4(1):206.
[40]
Justin H, Peter S, Richard E G, David J R, David A R, Sodeau J . Arch. Microbiol., 1995,163(2):143. https://www.ncbi.nlm.nih.gov/pubmed/7710328

doi: 10.1007/BF00381789     URL     pmid: 7710328
[41]
Sastry M, Ahmad A, Khan M I, Kumar R . Curr. Sci., 2003,85(25):162.
[42]
Gericke M, Pinches A . Hydrometallurgy, 2006,83(1):132.
[43]
Jung J H, Park T J, Lee S Y, Seo T S . Angew. Chem. Int. Edit., 2012,51(23):5634. https://www.ncbi.nlm.nih.gov/pubmed/22529022

doi: 10.1002/anie.201108977     URL     pmid: 22529022
[44]
Ha C, Zhu N, Ru S, Shi C, Cui J, Sohoo I, Wu P, Cao Y . Chem. Eng. J., 2016,288(s1/2):246.
[45]
He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N . Mater. Lett., 2007,61(18):3984.
[46]
Ahmad A, Senapati S, Islam Khan M, Kumar R, Ramani R, Srinivas V, Sastry M . Nanotechnology, 2003,14(7):824. https://iopscience.iop.org/article/10.1088/0957-4484/14/7/323

doi: 10.1088/0957-4484/14/7/323     URL    
[47]
Wang C, Kim Y J, Singh P, Mathiyalagan R, Jin Y, Yang D C . Artif. Cell. Nanomed. Biotechnol., 2016,24(24):1.
[48]
Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T . J. Biotechnol., 2007,128(3):648. https://www.ncbi.nlm.nih.gov/pubmed/17182148

doi: 10.1016/j.jbiotec.2006.11.014     URL     pmid: 17182148
[49]
Ahmad A, Senapati S, Islam Khan M, Kumar R, Sastry M . Langmuir, 2003,19(87):3550. https://www.ncbi.nlm.nih.gov/pubmed/15377635

doi: 10.3168/jds.S0022-0302(04)73492-X     URL     pmid: 15377635
[50]
Karthik L, Kumar G, Kirthi A V, Rahuman A A, Bhaskara R K . Bioprocess. Biosyst. Eng., 2014,37(2):261. https://www.ncbi.nlm.nih.gov/pubmed/23771163

doi: 10.1007/s00449-013-0994-3     URL     pmid: 23771163
[51]
Jae H J, Singh P, Kim Y J, Wang C, Mathiyalagan R, Jin C G, Yang D C . Artif. Cell. Nanomed. Biotechnol., 2016,44(6):1576. https://www.ncbi.nlm.nih.gov/pubmed/26232081

doi: 10.3109/21691401.2015.1068792     URL     pmid: 26232081
[52]
Joerger R, Klaus T, Granqvist C G . Adv. Mater., 2000,12(6):407. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095     URL    
[53]
Lengke M, Michael E F, Southam G . Langmuir, 2006,22(17):7318. https://www.ncbi.nlm.nih.gov/pubmed/16893232

doi: 10.1021/la060873s     URL     pmid: 16893232
[54]
Yong P, Rowson N, Farr J P, Harris I R, Macaskie L . Biotechnol. Bioeng., 2002,80(4):369. https://www.ncbi.nlm.nih.gov/pubmed/12325145

doi: 10.1002/bit.10369     URL     pmid: 12325145
[55]
Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M I, Kumar R, Sastry M . ChemBioChem, 2002,3(5):461. https://www.ncbi.nlm.nih.gov/pubmed/12007181

doi: 10.1002/1439-7633(20020503)3:5【-逻*辑*与-】lt;461::AID-CBIC461【-逻*辑*与-】gt;3.0.CO;2-X     URL     pmid: 12007181
[56]
Riddin T L, Gericke M, Whiteley C G . Nanotechnology, 2006,17(14):3482. https://www.ncbi.nlm.nih.gov/pubmed/19661593

doi: 10.1088/0957-4484/17/14/021     URL     pmid: 19661593
[57]
Philip D . Spectroc. Acta Pt. A -Molec. Biomolec. Spectr., 2009,73(2):374.
[58]
Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G . Mater. Lett., 2008,62(29):4411.
[59]
Nanda A, Saravanan M . Nanomed.-Nanotechnol. Biol. Med., 2009,5(4):452.
[60]
Avd W, Minor M, Norde W, Zehnder A J, Lyklema J . Langmuir, 1997,13(1997):165.
[61]
Zhang X, Yan S, Tyagi R D, Surampalli R Y . Chemosphere, 2011,82(4):489. https://www.ncbi.nlm.nih.gov/pubmed/21055786

doi: 10.1016/j.chemosphere.2010.10.023     URL     pmid: 21055786
[62]
Simkiss K, Wilbur K M . Biomineralization: Cell Biology and Mineral Deposition. New York. 1989. 257.
[63]
Vert M . Biochimie, 1996,78(3):216.
[64]
Salunke B K, Sawant S S, Lee S I, Kim B S . World J. Microbiol. Biotechnol., 2016,32(5):88. https://www.ncbi.nlm.nih.gov/pubmed/27038958

doi: 10.1007/s11274-016-2044-1     URL     pmid: 27038958
[65]
Karthik L, Kumar G, Kirthi A V, Rahuman A A, Rao K V B . Bioprocess. Biosyst. Eng., 2014,37(2):261. https://www.ncbi.nlm.nih.gov/pubmed/23771163

doi: 10.1007/s00449-013-0994-3     URL     pmid: 23771163
[66]
Nangia Y, Wangoo N, Sharma S, Wu J S, Dravid V, Shekhawat G S, Suri C R . Appl. Phys. Lett., 2009,94(23):112.
[67]
Wu R R, Cui L, Chen L X, Wang C, Cao C L, Sheng G P, Yu H Q, Zhao F . Sci. Rep., 2013,3:3307. https://www.ncbi.nlm.nih.gov/pubmed/24264440

doi: 10.1038/srep03307     URL     pmid: 24264440
[68]
Riddin T L, Govender Y, Gericke M, Whiteley C G . Enzyme Microb. Technol., 2009,45(4):267.
[69]
Senapati S, Ahmad A, Khan M I, Murali S, Rajiv K . Small, 2010,1(5):517. https://www.ncbi.nlm.nih.gov/pubmed/17193479

doi: 10.1002/smll.200400053     URL     pmid: 17193479
[70]
Durán N, Marcato P D, Alves O L, Souza G I D, Esposito E .J. Nanobiotechnol., 2005,3(1):8.
[71]
Thomas R, Janardhanan A, Varghese R T, Soniya E V, Mathew J, Radhakrishnan E K . Braz. J. Microbiol., 2014,45(4):1221. https://www.ncbi.nlm.nih.gov/pubmed/25763025

doi: 10.1590/s1517-83822014000400012     URL     pmid: 25763025
[72]
Sutradhar K, Amin M L . Isrn Nanotechnology, 2014,2014(2014):1.
[73]
韩冬琳(Han D L), 亓洪昭(Qi H Z), 赵瑾(Zhao J), 龙丽霞(Long L X), 任玉(Ren Y), 原续波(Yuan X B) . 化学进展 (Process in Chemistry), 2016,28(09):1397.
[74]
Ruan S, Cao X, Cun X, Hu G, Zhou Y, Zhang Y, Lu L, He Q, Gao H . Biomaterials, 2015,60:100. https://www.ncbi.nlm.nih.gov/pubmed/25988725

doi: 10.1016/j.biomaterials.2015.05.006     URL     pmid: 25988725
[75]
Tuo Y, Liu G, Dong B, Yu H, Zhou J, Wang J, Jin R . Environ. Sci. Pollut. Res., 2016,24(6):1. http://link.springer.com/10.1007/s11356-015-5582-4

doi: 10.1007/s11356-015-5582-4     URL    
[76]
Shin K H, Cha D K . Chemosphere, 2008,72(2):257. https://www.ncbi.nlm.nih.gov/pubmed/18331753

doi: 10.1016/j.chemosphere.2008.01.043     URL     pmid: 18331753
[77]
Wu X, Zhao F, Rahunen N, Varcoe J R, Claudio A R, Thumser A E, Slade R C T . Angew. Chem.-Int. Edit., 2011,50(2):427. http://doi.wiley.com/10.1002/anie.201002951

doi: 10.1002/anie.201002951     URL    
[78]
Zheng D, Hu C, Gan T, Dang X, Hu S . Sens. Actuator B -Chem., 2010,148(1):247.
[79]
Du L, Jiang H, Liu X, Wang E . Electrochem. Commun., 2007,9(5):1165.
[80]
Zhang H, Hu X . Enzyme Microb. Technol., 2018,113:59.
[81]
Patespadas A M, Field J A, Lila O G, Elías R F, Cervantes F, Reyes S A . Chemosphere, 2016,144:745. https://www.ncbi.nlm.nih.gov/pubmed/26408982

doi: 10.1016/j.chemosphere.2015.09.035     URL     pmid: 26408982
[82]
Patespadas A M, Field J A, Flores E R, Cervantes F J, Sierra A R . J. Chem. Technol. Biotechnol., 2016,91(4):1183.
[83]
Bunge M, Lina S S, Rotaru A E, Gauthier D, Lindhardt A, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer R . Biotechnol. Bioeng., 2010,107(2):206. https://www.ncbi.nlm.nih.gov/pubmed/20506339

doi: 10.1002/bit.22801     URL     pmid: 20506339
[84]
Corte S D, Sabbe T, Hennebel T, Vanhaecke L, Bart D G, Verstraete W, Boon N . Water Res., 2012,46(8):2718. https://www.ncbi.nlm.nih.gov/pubmed/22406286

doi: 10.1016/j.watres.2012.02.036     URL     pmid: 22406286
[85]
Martins M, Mourato C, Sanches S, Noronha J P, Crespo M T B, Pereira I A C . Water Res., 2016,108:160. https://www.ncbi.nlm.nih.gov/pubmed/27817891

doi: 10.1016/j.watres.2016.10.071     URL     pmid: 27817891
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[3] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[4] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[5] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[8] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[9] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[10] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[11] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[12] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[13] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[14] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[15] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
阅读次数
全文


摘要

贵金属纳米颗粒的微生物合成