English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 30-37 DOI: 10.7536/PC181209 前一篇   后一篇

• 综述 •

二苯丙氨酸二肽组装体的光学性质及潜在应用

费进波1,**(), 李琦1,2, 赵洁1, 李峻柏1,2,**()   

  1. 1. 中国科学院化学研究所 北京 100190
    2. 中国科学院大学 北京 100049
  • 收稿日期:2018-12-14 修回日期:2019-01-08 出版日期:2019-01-15 发布日期:2019-01-17
  • 通讯作者: 费进波, 李峻柏
  • 基金资助:
    国家自然科学基金项目资助(21433010); 国家自然科学基金项目资助(21320102004); 国家自然科学基金项目资助(21573248); 国家自然科学基金项目资助(21872150)

Optical Properties and Potential Applications of Diphenylalanine Dipeptide-Based Assemblies

Jinbo Fei1,**(), Qi Li1,2, Jie Zhao1, Junbai Li1,2,**()   

  1. 1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-12-14 Revised:2019-01-08 Online:2019-01-15 Published:2019-01-17
  • Contact: Jinbo Fei, Junbai Li
  • About author:
    ** Corresponding author e-mail: (Jinbo Fei);
    e-mail: (Junbai Li)
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21433010); The work was supported by the National Natural Science Foundation of China(21320102004); The work was supported by the National Natural Science Foundation of China(21573248); The work was supported by the National Natural Science Foundation of China(21872150)

二苯丙氨酸二肽是导致阿尔兹海默症的β-淀粉样蛋白的关键识别序列。因其结构简单、组装性能优异,日益成为分子组装领域构筑功能材料的“明星”基元。目前,围绕二苯丙氨酸二肽及其衍生物的可控组装, 人们已经开展了大量的研究工作, 包括分子设计、结构调控和功能应用等。本课题组利用分子组装技术,通过调节分子间相互作用,实现了二苯丙氨酸二肽组装体的可控制备,并探索了它们的光学性质以及潜在应用。本文归纳分析了二苯丙氨酸二肽组装体的光功能化方法,详细介绍了这些短肽基光功能材料在光波导、光学成像、光动力治疗、光学制造和光催化等领域的应用,并初步提出了今后可能的发展方向。

Diphenylalanine dipeptide is a key recognition sequence of the β-amyloid protein that causes Alzheimer's disease. Due to its simple structure and excellent assembly performance, diphenylalanine dipeptide has been becoming a “star” building block in the field of molecular assembly to construct many functional materials. At present, a large number of researchers have been carried out on the controllable assembly of diphenylalanine dipeptide and its derivatives, including molecular design, structural regulation and functional applications. In recent years, through molecular assembly, our group has achieved the controlled preparation of diphenylalanine dipeptide-based assemblies by modulating various kinds of molecular interactions including Schiff-base covalent bonding, electrostatic attraction, hydrogen bonding and pi-pi stacking. In particular, we have explored optical properties and potential applications of such assembled diphenylalanine dipeptide-based materials. This review will mainly introduce the research progress mentioned above. Firstly, the preparation methods of diphenylalanine-based photofunctional materials through covalent, non-covalent or combined assembly are analyzed, compared and discussed. Then, the applications of these assembled materials in actively optical waveguiding, optical imaging for tracing drug delivery, photodynamic therapy for cancer treatment, patterned photofabrication and biomimetic photocatalysis are introduced in detail, respectively. Finally, we give a summary and propose the possible development trend of diphenylalanine dipeptide-based assemblies.

()
图1 通过405 nm波长激光激发阳离子二苯丙氨酸二肽纳米颗粒(CDPNSs),多通道收集的共聚焦显微(CLSM)图片:(a) 蓝色(430~480 nm);(b) 绿色(500~550 nm) 和(c) 红色(590~640 nm),标尺为1 μm;(d) 阳离子二苯丙氨酸二肽颗粒浊液在405 nm处的荧光光谱[29]
Fig.1 CLSM images of CDPNSs excited at 405 nm and collected at (a) blue(430~480 nm), (b) green(500~550 nm) and (c) red(590~640 nm) channels. Scale bar is 1 μm. (d) Fluorescent spectrum of CDPNSs powder dispersed in water excited at 405 nm[29]
图2 (a) 阳离子二肽(CDP)、京尼平及纳米球(DPGNSs)在水中的紫外-可见光吸收光谱。(b) DPGNSs的荧光发射光谱,内插图是激光共聚焦荧光图像(激发波长为559 nm)[31]
Fig.2 (a) UV/vis spectra of CDP, genipin, and DPGNSs. (b) Fluorescence emission spectrum of DPGNSs(λex=559 nm). The inset is CLSM image of DPGNCs excited at 559 nm and collected at red(590~640 nm) channels[31]
图3 阳离子二苯丙氨酸二肽与磺酸基偶氮苯分子共组装体的光响应性[34]
Fig.3 Light-responsive assembly and disassembly of cationic diphenylanaline and EPABS[34]
图4 二苯丙氨酸二肽晶体的光波导现象。(a) 激发波长在330~380 nm时的晶体片光致发光(PL)图。(b) 在单个晶体片中,两端比中间有更加明亮的光致发光;内插图为晶体片一端放大的光致发光情况。对单个晶体片(c, d)和掺杂尼罗红(NR)的单个晶体片(e, f)一端进行局部激发时光波导现象的观测。(c, e)为明场像;(d, f)为光致发光像。红色圆环代表激发区域;绿色箭头指示在另一端输出的光致发光[38]
Fig.4 Optical waveguiding of dipeptide crystals. (a) PL image of platelets excited at 330~380 nm. (b) PL image of a single platelet showing brighter PL emission at the ends than in the body; the inset shows the PL of one end magnified. (cf) Direct observation of waveguiding with local excitation at one end of an individual platelet (c, d) and of a platelet incorporating NR dye (e, f). Note: (c) and (e) are bright-field images; (d) and (f) are PL images. The red circle marks the excitation area, and the green arrow denotes the out-coupling of PL emission at the other end[38]
图5 水中超声调控的二苯丙氨酸二肽三种组装结构形成示意图[39]
Fig.5 Controlled assembly of dipeptide nano- and microstructures under the assistance of sonication[39]
图6 掺杂DAAQ、RhB、FITC三种染料的有机凝胶经水诱导后在日光灯和365 nm紫外灯下拍摄的照片(凝胶在模型中制备并完整取出)[33]
Fig.6 Photographs taken under white light and UV irradiation at λ=365 nm of the composite organogels that contained different guest dye molecules after water induction. The organogels have been removed from their vessels[33]
图7 基于静电相互作用,阳离子型二肽与杂多酸(POM)共组装成为杂化超分子结构[47]
Fig.7 A schematic illustration of cationic dipeptide and POM coassembly to hybrid supramolecular structures: the peptide-encapsulated POM clusters are first formed through electrostatic interactions and then such clusters further aggregate to form the hybrid spheres[47]
[1]
Buddingh B C, van Hest J C M . Acc. Chem. Res., 2017,50:769.
[2]
Komiyama M, Yoshimoto K, Sisido M, Ariga K . Bull. Chem. Soc.Jpn., 2017,90:967.
[3]
Ariga K, Li J B, Fei J B, Ji Q M, Hill J P . Adv. Mater., 2016,28:1251.
[4]
Ariga K, Ji Q M, Mori T, Naito M, Yamauchi Y, Abe H, Hill J P . Chem. Soc. Rev., 2013,42:6322.
[5]
Xu Y Q, Fei J B, Li G L, Yuan T T, Wang C L, Li J B . Angew. Chem. Int. Ed., 2018,57:6532.
[6]
Li G L, Fei J B, Xu Y Q, Li Y, Li J B . Adv. Funct. Mater., 2018,28:1706557.
[7]
Xu Y Q, Fei J B, Li G L, Yuan T T, Li J B . ACS Nano, 2017,11:10175.
[8]
Xu Y Q, Fei J B, Li G L, Yuan T T, Wang C L, Li X B, Li J B . Angew. Chem. Int. Ed., 2007,56:12903.
[9]
Zhang S . Nat. Biotechnol, 2003,21:1171.
[10]
Gelain F, Unsworth L D, Zhang S . J. Control.Release, 2010,145:23.
[11]
Zhang S . Acc. Chem. Res., 2012,45:2142.
[12]
Boekhoven J, Stupp S I . Adv. Mater., 2014,26:1642.
[13]
Newcomb C J, Sur S, Ortony J H, Lee O S, Matson J B, Boekhoven J, Yu J M, Schatz G C Stupp S I, . Nat. Commun., 2014,5:3321.
[14]
Lee S S, Huang B J, Kaltz S R, Sur S, Newcomb C J, Stock S R, Shah R N, Stupp S I . Biomaterials, 2013,34:452.
[15]
Hendricks M P, Sato K, Palmer L C Stupp S I, . Acc. Chem. Res., 2017,50:2440.
[16]
Tao K, Makam P, Aizen R, Gazit E , Science 2017, 358: eaam9756.
[17]
Liu K, Xing R R, Chen C J, Shen G Z, Yan L Y, Zou Q L, Ma G H, Möhwald H, Yan X H . Angew. Chem. Int. Ed., 2015,54:500.
[18]
Zou Q L, Liu K, Abbas M, Yan X H . Adv. Mater. 2016,28:1031.
[19]
Liu K, Xing R R, Li Y X, Zou Q L, Möhwald H, Yan X H . Angew. Chem. Int.Ed., 2016,55:12503.
[20]
Liu K, Yuan C Q, Zou Q L, Xie Z C, Yan X H . Angew. Chem. Int.Ed., 2017,56:7876.
[21]
Schnaider L, Brahmachari S, Schmidt N W, Mensa B, Bychenko S S D, Adler-Abramovich L, Shimon L J W, Kolusheva S, DeGrado W F, Gazit E . Nat. Commun., 2017,8:1365.
[22]
Tao K, Levin A, Adler-Abramovich L, Gazit E . Chem. Soc. Rev., 2016,45:3935.
[23]
Arnon Z A, Vitalis A, Levin A, Michaels T C T, Caflisch A, Knowles T P J, Adler-Abramovich L, Gazit E . Nat. Commun., 2016,7:13190.
[24]
Kim J H, Lee M, Lee J S, Park C B . Angew. Chem. Int. Ed., 2012,51:517.
[25]
Wang J, Liu K, Xing R R, Yan X H . Chem. Soc. Rev., 2016,45:5589.
[26]
Liu X C, Fei J B, Wang A H, Cui W, Zhu P L, Li J B . Angew. Chem. Int. Ed., 2017,56:2660.
[27]
Yuan T T, Fei J B, Xu Y Q, Yang X K, Li J B . Macromol. Rapid Commun., 2017,38:1700408.
[28]
Tao K, Xue B, Frere S, Slutsky I, Cao Y, Wang W, Gazit E. . Chem.Mater, 2017,29:4454.
[29]
Zhang H, Fei J B, Yan X H, Wang A H, Li J B . Adv. Funct. Mater., 2015,25:1193.
[30]
Fei J B, Zhang H, Wang A H, Qin C C, Xue H M, Li J B . Adv. Healthcare Mater., 2017,6:1601198.
[31]
Yang X K, Fei J B, Li Q, Li J B . Chem. Eur. J., 2016,22:6477.
[32]
Liu X C, Fei J B, Zhu P L, Li J B . Chem. Asian J., 2016,11:2700.
[33]
Liu X C, Zhu P L, Fei J B, Zhao J, Yan X H, Li J B . Chem. Eur. J., 2015,21:9461.
[34]
Ma H C, Fei J B, Li Q, Li J B . Small, 2015,11:1787.
[35]
Li X B, Fei J B, Xu Y Q, Li D X, Yuan T T, Li G L, Wang C L, Li J B . Angew. Chem. Int. Ed., 2018,57:1903.
[36]
Yan X H, Cui Y, He Q, Wang K W, Li J B . Chem. Mater., 2008,20:1522.
[37]
Yan X H, Li J B, Möwald H . Adv.Mater, 2011,23:2796.
[38]
Yan X H, Su Y, Li J B, Früh J, Möwald H . Angew. Chem. Int. Ed., 2011,50:11186.
[39]
Li Q, Jia Y, Dai L R, Yang Y, Li J B . ACS Nano, 2015,9:2689.
[40]
Li Q, Ma H C, Wang A H, Jia Y, Dai L R, Li J B . Adv Optical Mater., 2015,3:194.
[41]
Sun B B, Riegler H, Dai L R, Erikelmann S, Li Y, Li G L, Yang Y, Fu M F, Fei J B, Li J B . ACS Nano, 2018,12:1934.
[42]
Sun B B, Li Q, Riegler H, Eickelmann S, Dai L R, Yang Y, Perez-Grarcia R, Jia Y, Chen G X, Fei J B, Holmberg K, Li J B . ACS Nano, 2017,11:10489.
[43]
Tao K, Fan Z, Su L M, Makam P, Tian Z, Ruegsegger M, Shaham-Niv S, Hansford D, Ailzen R, Pan Z, Galster S, Ma J J, Yuan F, Si M S, Qu S N, Zhang M J, Gazit E, Li J B . Nat. Commun., 2018,9:3217.
[44]
Gazit E . Nat.Nanotechnol, 2016,11:309.
[45]
Amdursky N, Gazit E, Rosenman G . Adv.Mater, 2010,22:2311.
[46]
Sun B B, Wang L, Li Q, He P P, Liu H L, Wang H, Yang Y, Li J B . Biomacromolecules, 2017,18:3506.
[47]
Yan X H, Zhu P L, Fei J B, Li J B . Adv. Mater., 2010,22:1283.
[48]
Zou Q L, Zhang L, Yan X H, Wang A H, Ma G H, Li J B, Möwald H, Mann S . Angew. Chem. Int. Ed., 2014,53:2366.
[49]
Draper E R, Adams D Adams D . Chem. Commun., 2016,52:8196.
[50]
Sun H L, Chen Y, Han X, Liu Y . Angew. Chem. Int. Ed., 2017,56:7062.
[51]
Li M, Tang H X . Nat. Mater., 2019,18:9.
[52]
Chung K, Yu S, Heo C J, Shim J W, Yang S M, Han M G, Lee H S, Jin Y W, Lee S Y, Park N, Shin J H . Adv. Mater., 2012,24:2375.
[53]
Berger O, Yoskovitz E, Adler-Abramovich L, Gazit E . Adv. Mater., 2016,28:2195.
[54]
Niu G D, Zhang L, Ruditskiy A, Wang L D, Xia Y N . Nano Lett., 2018,18:3879.
[1] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[5] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[6] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[9] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[10] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[11] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[14] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[15] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.