English
新闻公告
More
化学进展 2019, Vol. 31 Issue (4): 597-612 DOI: 10.7536/PC180909 前一篇   后一篇

• •

太阳光谱选择性吸收涂层

曹宁宁1, 卢松涛1, 姚锐1, 李慧敏1, 秦伟2, 吴晓宏1,**()   

  1. 1. 哈尔滨工业大学化工与化学学院 新能源转换与储存关键材料技术工业和信息化部重点实验室 哈尔滨 150001
    2. 哈尔滨工业大学材料学院 空间环境材料行为与评价技术国家级重点实验室 哈尔滨 150001
  • 收稿日期:2018-09-10 出版日期:2019-01-15 发布日期:2019-01-14
  • 通讯作者: 吴晓宏
  • 作者简介:
  • 基金资助:
    国家自然科学基金项目(51671074); 国家自然科学基金项目(51572060); 国家自然科学基金项目(51502062); 中国博士后科学基金项目(2016M590279)

Solar Spectrum Selective Absorbing Coatings

Ningning Cao1, Songtao Lu1, Rui Yao1, Huimin Li1, Wei Qin2, Xiaohong Wu1,**()   

  1. 1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
    2. National Defense Science and Technology Key Lab for Space Materials Behavior and Evaluation, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2018-09-10 Online:2019-01-15 Published:2019-01-14
  • Contact: Xiaohong Wu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51671074); National Natural Science Foundation of China(51572060); National Natural Science Foundation of China(51502062); China Postdoctoral Science Foundation Funded Project(2016M590279)

太阳能作为最重要的可再生新型能源,具有储量巨大、分布广泛以及清洁安全等诸多优势,研究太阳能利用技术具有丰富能源结构、降低环境污染、优化资源配置等重要意义,其中太阳能光-热转换是实现太阳能直接利用的最简单高效的方式。本文简要地介绍了太阳能新能源的重要性与优缺点,系统地论述了近年来在太阳能光-热转换材料中应用最广泛的太阳能集热器用选择性吸收涂层的研究进展,主要针对选择性吸收涂层的基本类型、作用机制及其国内外最新研究成果进行了较为全面地分析。最后,指出了太阳能选择性吸收涂层存在的主要问题并展望了其未来发展前景。

Solar energy, as the most important renewable energy source, has many advantages such as abundant reserves, wide distribution, cleanliness and safety. Therefore, the research on solar energy utilization technologies has important implications of enriching energy structure, reducing environmental pollution, and optimizing resource allocation. And as a note, the photo-thermal conversion is the simplest and most efficient way to achieve direct utilization of solar energy. This paper briefly introduces the significance, advantages and disadvantages of solar energy, and comprehensively analyzes the basic types, absorption mechanisms and the latest research results of selective absorbing coatings for indirect solar collectors. Finally, the existing problems, challenges and prospects for the development of spectrally selective absorbing coatings used for solar collectors are also commented.

()
图1 (a) 表面涂层型和(b) 直吸型太阳能集热器结构示意图
Fig. 1 Schematic of(a) surface coating based and(b) direct absorption based solar collectors
图2 金属陶瓷复合型吸收涂层结构示意图
Fig. 2 Structural diagram of the cermet absorbing coating
图3 双金属陶瓷涂层结构示意图
Fig. 3 Sketch of the double cermet coating
图4 一步法制备C-Cu-TiO2太阳能吸收涂层示意图[15]
Fig. 4 Schematic of the one-step preparation of C-Cu-TiO2 solar absorber coating[15]
图5 (a) 半导体-金属串联型吸收涂层结构示意图,(b) 半导体和(c) 半导体-金属串联材料的吸收机制
Fig. 5 (a) Schematic of the semiconductor-metal tandems, absorption mechanism of(b) semiconductor and(c) semiconductor-metal tandem material
图6 多层光干涉型吸收涂层结构示意图:(a) 电介质层/吸收层/电介质层(D/A/D)型和(b) 减反层/电介质层/吸收层/电介质层/吸收层(AR/D/A/D/A)型
Fig. 6 Schematic of multi-layered optical interference absorber coating:(a) type D/A/D and(b) type AR/D/A/D/A
表1 不同结构组成的吸收涂层的吸收率和热发射率[77]
Table 1 Absorptance(α) and thermal emittance(εT) of layer-added solar absorber with different construct[77]
表2 Ti/SiO2/Ti/TiO2/SiO2彩色吸收涂层的膜厚、吸收率和热发射率[77]
Table 2 Thickness for each layer, absorptance(α) and thermal emittance(εT) of colored solar absorber coatings with structure Ti/SiO2/Ti/TiO2/SiO2[77]
图7 表面纹理型吸收涂层结构示意图
Fig. 7 Schematic of textured surface absorber coating
图8 (a) 具有纳米光子结构的TiAlN吸收涂层结构示意图和(b) 纯Cu基底、平面Cu/TiAlN和具有纳米光子结构的Cu/TiAlN涂层的吸收光谱图[116]
Fig. 8 (a) Schematic of TiAlN absorber coating with nanophotonic structure,(b) Absorption spectra of bare Cu substrate, plane Cu/TiAlN and nanostructured Cu/TiAlN coatings[116]. Copyright: Royal Society of Chemistry.
[1]
Panwar N L, Kaushik S C ,Kothari S. Renew. Sust. Energ Rev., 2011,15:1513.
[2]
Lewis N S. Science, 2016,351: aad1920.
[3]
Mishra A ,Bauerle P. Angew. Chem. Int. Edit., 2012,51:2020.
[4]
王聪(Wang C), 代蓓蓓(Dai B B), 于佳玉(Yu J Y), 王蕾(Wang L), 孙莹(Sun Y) . 硅酸盐学报(Journal of the Chinese Ceramic Society), 2017,45(11):1555.
[5]
Tabor H . Sci.Am., 1956,195:97.
[6]
Dan A, Barshilia H C, Chattopadhyay K ,Basu B. Renew. Sust. Energ. Rev., 2017,79:1050.
[7]
(a) 殷志强(Yin Z Q). . 太阳能(Solar Energy), 2014,( 1):27.
[8]
Ho C K ,Iverson B D. Renew. Sust. Energ. Rev., 2014,29:835.
[9]
Atkinson C, Sansom C L, Almond H J ,Shaw C P. Renew. Sust. Energ. Rev., 2015,45:113.
[10]
Minardi J E, Chuang H N . Sol. Energy, 1975,17:179.
[11]
Choi S U S . ASME FED, 1995,231:99.
[12]
Taylor R A, Phelan P E, Otanicar T, Walker C A, Nguyen M, Trimble S, Prasher R J . Renew. Sustain. Ener., 2011,3:4.
[13]
Tian Y ,Zhao C Y. Appl. Energ, 2013,104:538.
[14]
Kalogirou S A . Prog. Energ. Combust., 2004,30:231.
[15]
王慷慨 . 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2016.
[16]
Shah A A, Ungaro C ,Gupta M C. Sol. Energ. Mat. Sol. C, 2015,134:209.
[17]
Selvakumar N ,Barshilia H C. Sol. Energ. Mat. Sol. C, 2012,98:1.
[18]
Sani E, Mercatelli L, Sansoni P, Silvestroni L, Sciti D J . Renew. Sustain. Ener., 2012,4:432.
[19]
Nezamifar J, Ghani K, Kiomarsipour N J . Nano Struct., 2015,5:203.
[20]
Ma P J, Geng Q F, Gao X H, Yang S R, Liu G J . Mater. Eng. Perform., 2016,25:2814.
[21]
Ma P J, Geng Q F, Gao X H, Liu G. RSC Adv ., 2016,6:87584.
[22]
Geng Q F, Zhao X, Gao X H, Yu H C, Yang S R ,Liu G. Sol. Energ. Mat. Sol. C, 2012,105:293.
[23]
Ebrahimifar H, Zandrahimi M J . Metall. Mater. Sci., 2011,53:305.
[24]
黄彦(Huang Y), 张俊英(Zhang J Y), 张中太(Zhang Z T), 唐子龙(Tang Z L) . 化学进展(Progress in Chemistry), 2009,21(12):2744.
[25]
Ding D W, Cai W M, Long M C, Wu H D ,Wu Y H. Sol. Energ. Mat. Sol. C, 2010,94:1578.
[26]
Orel Z C, Gunde M K ,Hutchins M G. Sol. Energ. Mat. Sol. C, 2005,85:41.
[27]
李安然(Li A R) . 西北大学硕士论文(Master Dissertation of Northwest University), 2015.
[28]
Abendroth T, Althues H, Mader G, Hartel P, Kaskel S ,Beyer E. Sol. Energ. Mat. Sol. C, 2015,143:553.
[29]
Martinez P M, Pozdin V A, Papadimitratos A, Holmes W, Hassanipour F, Zakhidov A A . Carbon, 2017,119:133.
[30]
Chen Z, Jain A, Bostrom T . Energy Procedia, 2014,58:179.
[31]
Chen Z ,Bostrom T. Sol. Energ. Mat. Sol. C, 2016,144:678.
[32]
Chen Z ,Bostrom T. Renew. Energy Environ. Sustain., 2016,1:2.
[33]
Tesfamichael T, Wackelgard E . Sol. Energy, 2000,68:335.
[34]
Garnett J C . Phil. Trans. R. Soc., 1906,205:237.
[35]
Green M A, Pillai S . Nat. Photonics, 2012,6:130.
[36]
Kennedy C E . NREL report July 2002.NREL [NREL/TP-520-31267].
[37]
罗小兰(Luo X L) . 湖南大学硕士论文(Master Dissertation of Hunan University), 2011.
[38]
Cespedes E, Wirz M ,Sanchez-Garcia J A, Alvarez-Fraga Lv, Escobar-Galindo R, Prieto C. Sol. Energ. Mat. Sol. C., 2014,122:217.
[39]
Cao F, McEnaney K, Chen G, Ren Z F. Energ. Environ. Sci., 2014,7:1615.
[40]
张敏(Zhang M), 梁卉(Liang H), 张志丹(Zhang Z D), 索妮(Suo N), 李培刚(Li P G) . 中国科学:技术科学(Scientia Sinica Technologica), 2016,46(1):46.
[41]
Wu Y X, Wang C, Sun Y, Xue Y F, Ning Y P, Wang W W, Zhao S X, Tomasella E ,Bousquet A. Sol. Energ. Mat. Sol. C, 2015,134:373.
[42]
崔银芳(Cui Y F), 尹万里(Yin W L), 王启(Wang Q), 孙守建(Sun S J), 谢光明(Xie G M) . 太阳能学报(Acta Energiae Solaris Sinica), 2015,36(4):907.
[43]
王金平(Wang J P), 王健(Wang J), 柯伟(Ke W), 吴超(Wu C), 吴旭林(Wu X L), 刘希杰(Liu X J), 殷志强(Yin Z Q) . 太阳能学报(Acta Energiae Solaris Sinica), 2015,36(6):1486.
[44]
Nuru Z Y, Motaung D E, Kaviyarasu K, Maaza M J . Alloy. Compd., 2016,664:161. https://linkinghub.elsevier.com/retrieve/pii/S0925838815319927

doi: 10.1016/j.jallcom.2015.12.201     URL    
[45]
Zheng L Q, Zhou F Y, Zhou Z D, Song X W, Dong G B, Wang M, Diao X G . Sol. Energy, 2015,115:341.
[46]
Dias D, Rebouta L, Costa P, Al-Rjoub A, Benelmeki M, Tavares C J, Barradas N P, Alves E, Santilli P, Pischow K . Sol. Energy, 2017,150:335.
[47]
Cao F, Kraemer D, Tang L, Li Y, Litvinchuk A P, Bao J M, Chen G ,Ren Z F. Energ. Environ. Sci, 2015,8:3040.
[48]
田广科(Tian G K), 苗树翻(Miao S F), 马天国(Ma T G), 范多旺(Fan D W) . 太阳能(Solar Energy) 2015(3):50.
[49]
Zou C W, Xie W ,Shao L X. Sol. Energ. Mat. Sol. C, 2016,153:9.
[50]
王聪(Wang C). . 科技成果管理与研究(Management and Research on Scientific and Technological Achievements), 2009,31(5):114.
[51]
Song P, Wu Y X, Wang L, Sun Y, Ning Y P, Zhang Y L, Dai B B, Tomasella E, Bousquet A ,Wang C. Sol. Energ. Mat. Sol. C, 2017,171:253.
[52]
Wu Y X, Wang C, Sun Y, Ning Y P, Liu Y F, Xue Y F, Wang W W, Zhao S X, Tomasella E, Bousquet A . Sol. Energy, 2015,119:18.
[53]
Ning Y P, Wang W W, Wang L, Sun Y, Song P, Man H L, Zhang Y L, Dai B B, Zhang J Y, Wang C, Zhang Y, Zhao S X, Tomasella E, Bousquet A ,Cellier J. Sol. Energ. Mat. Sol. C, 2017,167:178.
[54]
Bukauskas V, Kaciulis S, Mezzi A, Mironas A, Niaura G, Rudzikas M, Simkiene I, Setkus A . Thin Solid Films, 2015,585:5.
[55]
He M Y, Wang Y, Wang H N ,Chen R Y. Sol. Energ. Mat. Sol. C, 2016,144:264.
[56]
Xue Y F, Wang C, Sun Y, Wu Y X, Ning Y P, Wang W W . Vacuum, 2014,104:116.
[57]
Xue Y F, Wang C, Sun Y, Wang W W, Wu Y X, Ning Y P . Phys. Status Solidi A, 2014,211:1519.
[58]
Xue Y F, Wang C, Wang W W, Liu Y, Wu Y X, Ning Y P, Sun Y . Sol. Energy, 2013,96:113.
[59]
Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L . Nano Energy, 2017,37:232.
[60]
连亮(Lian L) . 武汉理工大学硕士论文(Master Dissertation of Wuhan University of Technology), 2013.
[61]
Soum-Glaude A, Bousquet I, Thomas L ,Flamant G. Sol. Energ. Mat. Sol. C, 2013,117:315.
[62]
Fang Z G, Lu C H, Guo C P, Lu Y, Gao D S, Ni Y R, Kou J H, Xu Z Z ,Li P W. Sol. Energ. Mat. Sol. C, 2015,134:252.
[63]
Usmani B, Dixit A . Sol. Energy, 2016,134:353.
[64]
Usmani B ,Dixit A. Sol. Energ. Mat. Sol. C, 2016,157:733.
[65]
Wattoo A G, Xu C, Yang L J, Ni C L, Yu C, Nie X, Yan M S, Mao S D, Song Z L . Sol. Energy, 2016,138:1.
[66]
Pal S, Diso D, Franza S, Licciulli A, Rizzo L J . Mater. Sci., 2013,48:8268. http://link.springer.com/10.1007/s10853-013-7639-4

doi: 10.1007/s10853-013-7639-4     URL    
[67]
Kim T K, Vansaders B, Moon J, Kim T, Liu C, Khamwannah J, Chun D, Choi D, Kargar A, Chen R K, Liu Z W, Jin S H . Nano Energy, 2015,11:247.
[68]
薛亚飞(Xue Y F) . 北京航空航天大学博士论文(Doctoral Dissertation of Beihang University), 2014.
[69]
Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Muller J, Kersch A, Schroeder U, Mikolajick T ,Hwang C S. Adv. Mater, 2015,27:1811.
[70]
Kotilainen M, Krumpolec R, Franta D, Soucek P, Homola T, Cameron D C ,Vuoristo P. Sol. Energ. Mat. Sol. C, 2017,166:140.
[71]
Cantas A, Aygun G ,Turan R. Appl. Surf. Sci, 2014,318:199.
[72]
Khoshman J M ,Kordesch M E. Surf. Coat. Tech, 2006,201:3530.
[73]
Pervak V, Krausz F, Apolonski A . Thin Solid Films, 2007,515:7984.
[74]
Selvakumar N, Barshilia H C, Rajam K S ,Biswas A. Sol. Energ. Mat. Sol. C, 2010,94:1412.
[75]
Nuru Z Y, Msimanga M, Muller T F G, Arendse C J, Mtshali C, Maaza M. Sol.Energy, 2015,111:357.
[76]
Khelifa A B, Khamlich S, Nuru Z Y, Kotsedi L, Mebrahtu A, Balghouthi M, Guizani A A, Dimassi W, Maaza M J . Alloy. Compd., 2018,734:204.
[77]
杨睿华 . 福建师范大学硕士论文(Master Dissertation of Fujian Normal University), 2015.
[78]
Gupta M C, Ungaro C, Jonathan I V, Gray S K . Sol. Energy, 2018,165:100.
[79]
Rodriguez-Palomo A, Cespedes E, Hernandez-Pinilla D ,Prieto C. Sol. Energ. Mat. Sol. C, 2018,174:50.
[80]
Ye L Q, Zhang Y L, Zhang X X, Hu T, Ding B ,Jiang B. Sol. Energ. Mat. Sol. C, 2013,111:160.
[81]
Li D Z, Wan D Y, Zhu X L, Wang Y M, Han Z, Han S S, Shan Y K ,Huang F Q. Sol. Energ. Mat. Sol. C, 2014,130:505.
[82]
Yang R H, Liu J Y, Lin L M, Qu Y, Zheng W F, Lai F C . Sol. Energy, 2016,125:453.
[83]
Robinson J ,Rahmatsamii Y. IEEE Trans. Antenn. Prop, 2004,52:397.
[84]
Jin N ,Rahmat-Samii Y. IEEE Trans. Antenn. Prop, 2007,55:556.
[85]
Wang H, Alshehri H, Su H ,Wang L P. Sol. Energ. Mat. Sol. C, 2018,174:445.
[86]
Konttinen P, Lund P D ,Kilpi R J. Sol. Energ. Mat. Sol. C, 2003,79:273.
[87]
苏法刚(Su F G), 梁静秋(Liang J Q), 梁中翥(Liang Z Z), 朱万彬(Zhu W B) . 物理学报(Acta Physica Sinica), 2011,60(5):725.
[88]
Khodasevych I E, Wang L, Mitchell A ,Rosengarten G. Adv. Opt. Mater, 2015,3:852.
[89]
Bierman M J ,Jin S. Energ. Environ. Sci, 2009,2:1050.
[90]
Xiao X, Miao L, Xu G, Lu L M, Su Z M, Wang N ,Tanemura S. Appl. Surf. Sci, 2011,257:10729.
[91]
Kumar S K, Suresh S, Murugesan S, Raj S P . Sol. Energy, 2013,94:299.
[92]
Lu C, Qi L, Yang J, Zhang D, Wu N, Ma J . J. Phys. Chem. B, 2004,108:17825.
[93]
Liu J, Huang X, Li Y, Sulieman K M, Heb X, Sun F J . Mater. Chem., 2006,16:4427.
[94]
Singh D P, Ojha A K, Srivastava O N . J. Phys. Chem. C, 2009,113:3409.
[95]
Wang X L, Wu X F, Yuan L, Zhou C P, Wang Y X, Huang K K ,Feng S H. Sol. Energ. Mat. Sol. C, 2016,146:99.
[96]
何国钟(He G Z) . 化学进展(Progress in Chemistry), 1997,9(2):141.
[97]
Valentini F, Zambotto I, Sciti D, Silvestroni L, Melandri C ,Guicciardi S. Adv. Eng. Mater, 2013,15:330.
[98]
唐天同(Tang T T), 王兆宏(Wang Z H) . 微纳加工科学原理(The Science of Micro- and Nano-Fabrication). 北京: 电子工业出版社(Beijing: Publishing House of Electronics Industry), 2010. 304.
[99]
Sciti D, Silvestroni L, Trucchi D M, Cappelli E, Orlando S ,Sani E. Sol. Energ. Mat. Sol. C, 2015,132:460.
[100]
Sciti D, Trucchi D M, Bellucci A, Orlando S, Zoli L ,Sani E. Sol. Energ. Mat. Sol. C, 2017,161:1.
[101]
魏其睿(Wei Q R), ,王健(Wang J), ,李德杰(Li D J), ,殷志强(Yin Z Q) . 太阳能学报(Acta Energiae Solaris Sinica), 2011,32(8):1186.
[102]
Hernandez-Pinilla D, Rodriguez-Palomo A, Fraga-Alvarez L, Cespedes E, Prieto J E, Munoz-Martin A ,Prieto C. Sol. Energ. Mat. Sol. C, 2016,152:141.
[103]
Gao X H, Guo Z M, Geng Q F, Ma P J, Wang A Q, Liu G. RSC Adv ., 2016,6:63867.
[104]
Yoganand S N, Raghuveer M S, Jagannadham K, Wu L, Karoui A ,Rozgony G. Appl. Phys. Lett, 2002,80:79.
[105]
Coulibaly M, Arrachart G, Mesbah A ,Deschanels X. Sol. Energ. Mat. Sol. C, 2015,143:473.
[106]
Ding D, Cai W . Mater. Lett 2013,93:269.
[107]
Guo C F, Sun T, Cao F, Liu Q, Ren Z F. Light-Sci. Appl., 2014,3:e161.
[108]
Xu Y, Huang Z, Liu Y, Fang M, Yin L ,Guan M. Solid State Sci, 2012,14:730.
[109]
Li J, Wang H, Li M, Yu Z J . Rare Earth, 2001,29:477.
[110]
Gao X H, Guo Z M, Geng Q F, Ma P J, Wang A Q, Liu G . Sol. Energy, 2016,140:199.
[111]
Cao F, Tang L, Li Y, Litvinchuk A P, Bao J M ,Ren Z F. Sol. Energ. Mat. Sol. C, 2017,160:12.
[112]
Zhang K, Hao L, Du M, Mi J, Wang J N ,Meng J P. Renew. Sust. Energ. Rev., 2017,67:1282.
[113]
Yu Q H, Mi J, Lang Y F, Du M, Li S J, Yang H L, Hao L, Liu X P ,Jiang L J. Prog. Nat. Sci, 2017,27:410.
[114]
Zhang K, Du M, Hao L, Meng J P, Wang J N, Liu X P, Deng Z J, Min J ,Zhao B. Surf. Coat. Tech, 2017,323:65.
[115]
Zhang K, Du M, Hao L, Meng J P, Wang J N, Mi J ,Liu X P. ACS Appl. Mater. Inter, 2016,8:34008.
[116]
Wattoo A G, Bagheri R, Ding X F, Zheng B Z, Liu J K, Xu C, Yang L J, Song Z L . J. Mater. Chem. C, 2018,6:8646.
[117]
Aeschlimann M, Brixner T, Differt D, Heinzmann U, Hensen M, Kramer C, Lukermann F, Melchior P, Pfeiffer W, Piecuch M, Schneider C, Stiebig H, Struber C, Thielen P . Nat. Photonics, 2015,9:663.
[118]
Park Y S, Lee J S . ACS Photonics, 2017,4:2587.
[119]
Wiersma D S . Nat. Photonics, 2013,7:188.
[120]
Wang K X, Yu Z, Liu V, Cui Y, Fan S. Nano Lett ., 2012,12:1616.
[121]
Brongersma M L, Cui Y, Fan S . Nat. Mater 2014,13:451.
[122]
Yu Z, Raman A ,Fan S. Proc. Natl. Acad. Sci. U.S. A., 2010,107:17491.
[123]
Hedayati M K, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula V S, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M . Adv. Mater 2011,23:5410.
[124]
Shi Y, Wang X, Liu W, Yang T, Ma J, Yang F . Opt. Express, 2014,22:20473.
[125]
Wang F, Zhang X, Wang L, Jiang Y, Wei C, Zhao Y J . Power Sources, 2015,293:698.
[126]
郭志明(Guo Z M) . 兰州交通大学硕士论文(Master Dissertation of Lanzhou Jiaotong University), 2016.
[127]
Rebouta L, Sousa A, Capela P, Andritschky M, Santilli P, Matilainen A, Pischow K, Barradas N P ,Alves E. Sol. Energ. Mat. Sol. C, 2015,137:93.
[128]
Feng J X, Zhang S, Lu Y, Yu H W, Kang L M, Wang X Y, Liu Z M, Ding H C, Tian Y, Ouyang J . Sol. Energy, 2015,111:350.
[129]
Tsai T K, Hsueh S J, Fang J S J . Electron. Mater., 2014,43:229.
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[3] 曾毅, 任永生, 马文会, 陈辉, 詹曙, 曹静. 冶金法生产太阳能级硅的除硼方法、技术及工艺[J]. 化学进展, 2022, 34(4): 926-949.
[4] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[5] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[6] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[7] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[8] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[9] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[10] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[11] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[12] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
[13] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[14] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[15] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
阅读次数
全文


摘要

太阳光谱选择性吸收涂层