English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 50-62 DOI: 10.7536/PC181221 前一篇   后一篇

• 综述 •

碳团簇的结构及其演进

姚阳榕, 谢素原**()   

  1. 厦门大学化学化工学院化学系 厦门 361005
  • 收稿日期:2019-01-01 修回日期:2019-01-03 出版日期:2019-01-15 发布日期:2019-01-04
  • 通讯作者: 谢素原
  • 基金资助:
    国家自然科学基金项目资助(21721001); 国家自然科学基金项目资助(51572231)

Structures and Progress of Carbon Clusters

Yangrong Yao, Suyuan Xie**()   

  1. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received:2019-01-01 Revised:2019-01-03 Online:2019-01-15 Published:2019-01-04
  • Contact: Suyuan Xie
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21721001); The work was supported by the National Natural Science Foundation of China(51572231)

碳团簇是一种新型的碳材料,自20世纪80年代被发现以来,就以其独特的结构和优越的性能而在科学界掀起了研究狂潮。碳团簇的范畴非常广泛,小到气相中的单个碳原子,大到富勒烯、碳纳米管、碳纳米锥、石墨烯等都可以看作是碳团簇的存在形式。研究碳团簇的结构及其演进,解开碳团簇形成机理之谜,对开拓新型碳团簇材料的结构和应用都具有重要意义。本文对碳团簇的结构及其演进过程进行了回顾,并概述了目前碳团簇的合成方法、碳团簇结构的表征手段以及碳团簇演进的研究现状。

Carbon clusters, a new type of carbon material, have attracted great attentions in scientific community due to the unique structures and superior performances since its discovery in the 1980s. Carbon clusters have a wide range of categories ranging from single carbon atom in the gas phase to fullerenes, carbon nanotubes, carbon nanocones, graphenes, etc. It is of great significance to study the structures and progress of carbon clusters and solve the mystery of the formation mechanism for exploring new structures and applications of carbon cluster materials. In this paper, we review the structures and progress of carbon clusters and summary the synthesis, characterization and current state of progress of carbon clusters.

()
图1 碳团簇的质谱图[2]
Fig.1 The mass spectra of carbon clusters[2]
图2 激光蒸发法装置示意图[3]
Fig.2 Schematic diagram of laser vaporization system[3]
图3 电弧放电法装置示意图[18]
Fig.3 Schematic diagram of arc-discharge system[18]
图4 辉光放电法装置示意图[19, 20]
Fig.4 Schematic diagram of glow discharge system[19, 20]
图5 微波等离子体法装置示意图[21, 22]
Fig.5 微波等离子体法装置示意图[21, 22]
图6 (a)玻璃火焰燃烧装置示意图;(b)燃烧头的结构图[24]
Fig.6 (a) The glass combustion generator and (b) configuration of the burner[24]
图7 硫杂巴基碗/C60超分子组装一维超分子链[33]
Fig.7 One-dimensional supramolecular chain of sulfurdoped buckybowls/C60[33]
图8 “巴基手”与各类型富勒烯超分子组装共晶结构图。其中(a)2DPC{C60};(b)2DPC{C70};(c)2DPC{C90};(d)2DPC{α-PC71BM};(e)2DPC{β1-PC71BM};(f)2DPC{PCP};(g)2DPC{PCAE};(h)2DPC{Cs-C71H2-Ⅰ};(i)2DPC{Cs-C71H2-Ⅱ};(j)2DPC{C65H6};(k)2DPC{C60HPh};(l)2DPC{C60HCH3};(m)2DPC{C2v-C71H2-Ⅲ};(n)2DPC{Sc3N@C80};(o)2DPC{(C59N)2}[89]
Fig.8 Crystallographic structures of co-crystals between DPC and fullerenes.(a) 2DPC{C60}, (b) 2DPC{C70}, (c) 2DPC{C90}, (d) 2DPC{α-PC71BM}, (e) 2DPC{β1-PC71BM}, (f) 2DPC{PCP}, (g) 2DPC{PCAE}, (h) 2DPC{Cs-C71H2-Ⅰ}, (i) 2DPC{Cs-C71H2-Ⅱ}, (j) 2DPC{C65H6}, (k) 2DPC{C60HPh}, (l) 2DPC{C60HCH3}, (m) 2DPC{C2v-C71H2-Ⅲ}, (n) 2DPC{Sc3N@C80}, (o) 2DPC{(C59N)2}.Reprinted with permission[89].Copyright 2019 Springer Nature Publishing AG
图9 C1/C2机理形成C20示意图[34]
Fig.9 Schematic diagram for the formation of C20 by C1/C2 mechanism[34]
图10 C20-C34团簇氯化物在色谱中的分布以及对应的质谱图。其中(A)C18Cl10;(B)C22Cl12;(C)C23Cl10;(D)C24Cl12;(E)C25Cl10;(F)C26Cl12;(G)C28Cl12;(H)C30Cl12H2;(I)C32Cl12H2;(J)C34Cl12H2[37]
Fig.10 The distribution of chlorinated carbon clusters ranging from C18 to C34 and their corresponding mass spectra: (A) C18Cl10; (B) C22Cl12; (C) C23Cl10; (D)C24Cl12; (E) C25Cl10; (F) C26Cl12; (G)C28Cl12; (H) C30Cl12H2; (I) C32Cl12H2; (J) C34Cl12H2[37]
图11 通过原位氯化法捕获的含相邻五元环的富勒烯。其中(a)D5h(271)-C50Cl10;(b)C2v(540)-C54Cl8;(c)Cs(864)-C56Cl12;(d)C2v(913)-C56Cl10;(e)D2(916)-C56Cl12;(f)Cs(1804)-C60Cl12;(g)C2v(1809)-C60Cl8;(h)C3v(1911)-C64Cl4;(i)Cs(4169)-C66Cl6;(j)Cs(4169)-C66Cl10;(k)C2v(4348)-C66Cl10;(l)C1(hept)-C68Cl6;(m)C2(8064)-C70Cl10;(n)C2v(11188)-C72Cl4;(o)C1(14049)-C74Cl10;(p)C1(23863)-C78(OOCH2C6H5)Cl7
Fig.11 Pentagon-fused fullerenes captured by in-situ chlorination. (a) D5h(271)-C50Cl10; (b) C2v(540)-C54Cl8; (c) Cs(864)-C56Cl12; (d) C2v(913)-C56Cl10; (e) D2(916)-C56Cl12; (f) Cs(1804)-C60Cl12; (g) C2v(1809)-C60Cl8; (h) C3v(1911)-C64Cl4; (i) Cs(4169)-C66Cl6; (j) Cs(4169)-C66Cl10; (k) C2v(4348)-C66Cl10; (l) C1(hept)-C68Cl6; (m) C2(8064)-C70Cl10; (n) C2v(11188)-C72Cl4; (o) C1(14049)-C74Cl10; (p) C1(23863)-C78(OOCH2C6H5)Cl7
图12 从D5h(8149)-C70到D3h(14246)-C74的结构演进[53]
Fig.12 The progress from D5h(8149)-C70 to D3h(14246)-C74[53]
图13 C2v(2)-C78Cl6(C5Cl6)两个朝向的晶体结构图
Fig.13 Two orientations of the crystal of C2v(2)-C78Cl6(C5Cl6)
图14 从富勒烯到碳纳米管的演进过程
Fig.14 Progress from fullerenes to carbon nanotubes
[1]
Shaik S, Danovich D, Wu W, Su P, Rzepa H S, Hiberty P C . Nat. Chem., 2012,4:195.
[2]
Rohlfing E A, Cox D M, Kaldor A . J. Chem. Phys., 1984,81:3322.
[3]
Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E . Nature, 1985,318:162.
[4]
Zhang Q L, O’Brien S C, Heath J R, Liu Y, Curl R F, Kroto H W, Smalley R E . J. Phys. Chem., 1986,90:525.
[5]
Meijer G, Bethune D S . J. Chem. Phys., 1990,93:7800.
[6]
Hawkins J M, Meyer A, Loren S, Nunlist R . J. Am. Chem. Soc., 1991,113:9394.
[7]
Tycko R, Haddon R C, Dabbagh G, Glarum S H, Douglass D C, Mujsce A M . J. Phys. Chem., 1991,95:518.
[8]
Yannoni C S, Bernier P P, Bethune D S, Meijer G, Salem J R . J. Am. Chem. Soc., 1991,113:3190.
[9]
Ebbesen T W, Tabuchi J Tanigaki K, . Chem. Phys. Lett., 1992,191:336.
[10]
Smalley R E . Acc. Chem. Res., 1992,25:98.
[11]
Hunter J M, Fye J L, Roskamp E J, Jarrold M F . J. Phys. Chem., 1994,98:1810.
[12]
Goroff N S . Acc. Chem. Res., 1996,29:77.
[13]
Tan Y Z, Chen R T, Liao Z J, Li J, Zhu F, Lu X, Xie S Y, Li J, Huang R B, Zheng L S . Nat. Commun., 2011,2:420.
[14]
Dunk P W, Kaiser N K, Hendrickson C L, Quinn J P, Ewels C P, Nakanishi Y, Sasaki Y, Shinohara H, Marshall A G, Kroto H W . Nat. Commun., 2012,3:855.
[15]
Dunk P W, Mulet-Gas M, Nakanishi Y, Kaiser N K, Rodríguez-Fortea A, Shinohara H, Poblet J M, Marshall A G, Kroto H W . Nat. Commun., 2014,5:5844.
[16]
Xie S Y, Huang R B, Ding J, Yu L J, Wang Y H, Zheng L S . J. Phys. Chem.A, 2000,104:7161.
[17]
Krätschmer W, Lamb L D, Fostiropoulos K, Huffman D R . Nature, 1990,347:354.
[18]
Haufler R E, Conceicao J, Chibante L P F, Chai Y, Byrne N E, Flanagan S, Haley M M, O’Brien S C, Pan C, Xiao Z, Billups W E, Cinfolini M A, Hauge R H, Margrave J L, Wilson L J, Curl R F, Smalley R E . J. SPhys. Chem., 1990,94:8634.
[19]
Xie S Y, Huang R B, Chen L H, Huang W J, Zheng L S . Chem. Commun., 1998: 2045.
[20]
Xie S Y, Huang R B, Deng S L, Yu L J, Zheng L S . J. Phys. Chem.B, 2001,105:1734.
[21]
Xie S Y, Huang R B, Yu L J, Ding J, Zheng L S . Appl. Phys. Lett., 1999,75:2764.
[22]
Xie S Y, Deng S L, Huang R B, Yu L J, Zheng L S . Chem. Phys. Lett., 2001,343:458.
[23]
Howard J B, McKinnon J T, Makarovsky Y, Lafleur A L, Johnson M E . Nature, 1991,352:139.
[24]
Gao Z Y, Jiang W S, Sun D, Xie S Y, Huang R B, Zheng L S . Combust.Flame, 2010,157:966.
[25]
Weng Q H, He Q, Liu T, Huang H Y, Chen J H, Gao Z Y, Xie S Y, Lu X, Huang R B, Zheng L S . J. Am. Chem. Soc., 2010,132:15093.
[26]
Weng Q H, He Q, Sun D, Huang H Y, Xie S Y, Lu X, Huang R B, Zheng L S . J. Phys. Chem.C, 2011,115:11016.
[27]
Von Helden G, Gotts N G, Bowers M T . Nature, 1993,363:60.
[28]
Yang S H, Pettiette C L, Conceicao J, Cheshnovsky O, Smalley R E . Chem. Phys. Lett., 1987,139:233.
[29]
Xie S Y, Gao F, Lu X, Huang R B, Wang C R, Zhang X, Liu M L, Deng S L, Zheng L S . Science, 2004,304:699.
[30]
Wang C R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H . Nature, 2000,408:426.
[31]
Yamada M, Kurihara H, Suzuki M, Guo J D, Waelchli M, Olmstead M M, Balch A L, Nagase S, Maeda Y, Hasegawa T, Lu X, Akasaka T . J. Am. Chem. Soc., 2014,136:7611.
[32]
Olmstead M M, Costa D A, Maitra K, Noll B C, Phillips S L, van Calcar P M, Balch A L . J. Am. Chem. Soc., 1999,121:7090.
[33]
Liu Y M, Xia D, Li B W, Zhang Q Y, Sakurai T, Tan Y Z, Seki S, Xie S S, Y . Angew. Chem. Int. Ed. Engl., 2016,55:13047.
[34]
Wu X Z, Yao Y R, Chen M M, Tian H R, Xiao J, Xu Y Y, Lin M S, Abella L, Tian C B, Gao C L, Zhang Q, Xie S Y, Huang R B, Zheng L S . J. Am. Chem. Soc., 2016,138:9629.
[35]
Paquette L A . Proc. Natl. Acad. Sci. U. S.A., 1982,79:4495.
[36]
Ternansky R J, Balogh D W, Paquette L A . J. Am. Chem. Soc., 1982,104:4503.
[37]
Gao Z Y, Jiang W S, Sun D, Xie Y, Chen Z L, Yu L J, Xie S Y, Huang R B, Zheng L S . Talanta, 2010,81:48.
[38]
Kroto H W . Nature, 1987,329:529.
[39]
Stevenson S, Fowler P W, Heine T, Duchamp J C, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn H C . Nature, 2000,408:427.
[40]
Tan Y Z, Li J, Zhu F, Han X, Jiang W S, Huang R B, Zheng Z, Qian Z Z, Chen R T, Liao Z J, Xie S Y, Lu X, Zheng L S . Nat. Chem., 2010,2:269.
[41]
Tan Y Z, Han X, Wu X, Meng Y Y, Zhu F, Qian Z Z, Liao Z J, Chen M H, Lu X, Xie S Y, Huang R B, Zheng L S . J. Am. Chem. Soc., 2008,130:15240.
[42]
Zhou T, Tan Y Z, Shan G J, Zou X M, Gao C L, Li X, Li K, Deng L L, Huang R B, Zheng L S, Xie S Y . Chem.-Eur. J., 2011,17:8529.
[43]
Tan Y Z, Liao Z J, Qian Z Z, Chen R T, Wu X, Liang H, Han X, Zhu F, Zhou S J, Zheng Z, Lu X, Xie S Y, Huang R B, Zheng L S . Nat. Mater., 2008,7:790.
[44]
Han X, Zhou S J, Tan Y Z, Wu X, Gao F, Liao Z J, Huang R B, Feng Y Q, Lu X, Xie S Y, Zheng L S . Angew. Chem. Int. Ed., 2008,47:5340.
[45]
Gao C L, Li X, Tan Y Z, Wu X Z, Zhang Q, Xie S Y, Huang R B . Angew. Chem. Int. Ed., 2014,53:7853.
[46]
Tan Y Z, Li J, Du M Y, Lin S C, Xie S Y, Lu X, Huang R B, Zheng L S . Chem. Sci., 2013,4:2967.
[47]
Tan Y Z, Zhou T, Bao J, Shan G J, Xie S Y, Huang R B, Zheng L S . J. Am. Chem. Soc., 2010,132:17102.
[48]
Gao C L, Abella L, Tan Y Z, Wu X Z, Rodríguez-Fortea A, Poblet J M, Xie S Y, Huang R B, Zheng L S . Inorg. Chem., 2016,55:6861.
[49]
Tan Y Z, Li J, Zhou T, Feng Y Q, Lin S C, Lu X, Zhan Z P, Xie S Y, Huang R B, Zheng L S . J. Am. Chem. Soc., 2010,132:12648.
[50]
Piskoti C, Yarger J, Zettl A . Nature, 1998,393:771.
[51]
Tan Y Z, Xie S Y, Huang R B, Zheng L S . Nat. Chem., 2009,1:450.
[52]
Haddon R C . Acc. Chem. Res., 1988,21:243.
[53]
Stone A J, Wales D J . Chem. Phys. Lett., 1986,128:501.
[54]
Gao C L, Abella L, Tian H R, Zhang X, Zhong Y Y, Tan Y Z, Wu X Z, Rodríguez-Fortea A, Poblet J M, Xie S Y, Huang R B, Zheng L S . Carbon, 2018,129:286.
[55]
Wang C R, Sugai T, Kai T, Tomiyama T, Shinohara H . Chem.Commun, 2000,557.
[56]
Hennrich F H, Michel R H, Fischer A, Richard-Schneider S, Gilb S, Kappes M M, Fuchs D, Bürk M, Kobayashi K, Nagase S . Angew. Chem. Int. Ed. Engl., 1996,35:1732.
[57]
Simeonov K S, Amsharov K Y, Jansen M . Chem.-Eur.J., 2009,15:1812.
[58]
Shustova N B, Kuvychko I V, Bolskar R D, Seppelt K, Strauss S H, Popov A A, Boltalina O V . J. Am. Chem. Soc., 2006,128:15793.
[59]
Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y . Nature, 1992,357:142.
[60]
Ziegler K, Amsharov K Y, Halasz I, Jansen M . Z. Anorg. Allg. Chem., 2011,637:1463.
[61]
Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I . Chem.-Eur.J., 2009,15:10486.
[62]
Yang S, Chen C, Wei T, Tamm N B, Kemnitz E, Troyanov S I . Chem.-Eur.J., 2012,18:2217.
[63]
Epple L, Amsharov K, Simeonov K, Dix I, Jansen M . Chem.Commun, 2008,5610.
[64]
Dennis T J S, Kai T, Asato K, Tomiyama T, Shinohara H, Yoshida T, Kobayashi Y, Ishiwatari H, Miyake Y, Kikuchi K, Achiba Y . J. Phys. Chem.A, 1999,103:8747.
[65]
John S. Dennis T, Shinohara H . Chem.Commun, 1998: 619.
[66]
Balch A L, Ginwalla A S, Lee J W, Noll B C, Olmstead M M . J. Am. Chem. Soc., 1994,116:2227.
[67]
Miyake Y, Minami T, Kikuchi K, Kainosho M, Achiba Y . Mol. Cryst. Liq.Cryst.A, 2000,340:553.
[68]
Wang Z, Yang H, Jiang A, Liu Z, Olmstead M M, Balch A L . Chem. Commun., 2010,46:5262.
[69]
Yang S, Wei T, Troyanov S I . Chem.-Eur.J., 2014,20:14198.
[70]
Troyanov S I, Tamm N B . Crystallography Reports, 2009,54:598.
[71]
Wang S, Yang S, Kemnitz E, Troyanov S I . Chem.-Asian J., 2016,11:77.
[72]
Troyanov S I Tamm N B, . Chem. Commun., 2009,6035.
[73]
Yang H, Beavers C M, Wang Z, Jiang A, Liu Z, Jin H, Mercado B Q, Olmstead M M, Balch A L . Angew. Chem., 2010,122:898.
[74]
Yang S, Wei T, Wang S, Ioffe I N, Kemnitz E, Troyanov S I . Chem.-Asian J., 2014,9:3102.
[75]
Tamm N B, Troyanov S I . Chem.-Asian J., 2015,10:1622.
[76]
Tamm N B, Troyanov S I . Inorg. Chem., 2015,54:10527.
[77]
Tamm N B, Yang S, Wei T, Troyanov S I . Inorg. Chem., 2015,54:2494.
[78]
Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I . Angew. Chem., 2009,121:9266.
[79]
Yang H, Jin H, Che Y, Hong B, Liu Z, Gharamaleki J A, Olmstead M M, Balch A L . Chem.-Eur.J., 2012,18:2792.
[80]
Yang S, Wei T, Kemnitz E, Troyanov S I . Angew. Chem., 2012,124:8364.
[81]
Jin F, Yang S, Troyanov S I . Inorg. Chem., 2017,56:4780.
[82]
Wang S, Yang S, Kemnitz E, Troyanov S I . Chem. -Eur. J., 2016,22:5138.
[83]
Fritz M A, Kemnitz E, Troyanov S I . Chem. Commun., 2014,50:14577.
[84]
Wang S, Yang S, Kemnitz E, Troyanov S I . Angew. Chem. Int. Ed., 2016,55:3451.
[85]
Yang S, Wang S, Troyanov S I . Chem. -Eur. J., 2014,20:6875.
[86]
Yang S, Wei T, Kemnitz E, Troyanov S I . Chem. -Asian J., 2014,9:79.
[87]
Wang S, Yang S, Kemnitz E, Troyanov S I . Inorg. Chem., 2016,55:5741.
[88]
Iijima S . Nature, 1991,354:56.
[89]
Xu Y Y, Tian H R, Li S H, Chen Z C, Yao Y R, Wang S S, Zhang X, Zhu Z Z, Deng S L, Zhang Q Y, Yang S F, Xie S Y, Huang R B, Zheng L S . Nat. Commun., 2019,10:485.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[7] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[10] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[11] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[12] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[13] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[14] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[15] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
阅读次数
全文


摘要

碳团簇的结构及其演进