English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 252-271 DOI: 10.7536/PC170813 前一篇   后一篇

• 综述 •

聚(3,4-乙撑二氧噻吩)基电极材料:制备、改性及在电子器件中的应用

许頔, 沈沪江*, 袁慧慧, 王炜, 解俊杰   

  1. 中国科学院上海硅酸盐研究所 能量转换材料重点实验室 上海 200050
  • 收稿日期:2017-08-15 修回日期:2017-10-17 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 沈沪江,shenhujiang@mail.sic.ac.cn E-mail:shenhujiang@mail.sic.ac.cn
  • 基金资助:
    中国科学院科技服务网络计划项目(No.KFJ-SW-STS-152)和上海市科学技术委员会科研计划项目(No.15DZ2281200)资助

Poly(3, 4-Ethylenedioxythiophene) Based Electrode Materials: Preparation, Modification and Application in Electronic Devices

Di Xu, Hujiang Shen*, Huihui Yuan, Wei Wang, Junjie Xie   

  1. State Key Laboratory of Materials for Energy Transformation, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2017-08-15 Revised:2017-10-17 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the Science and Technology Service Network Initiative of Chinese Academy of Sciences(No.KFJ-SW-STS-152) and the Science and Technology Commission of Shanghai Municipality(No.15DZ2281200).
聚(3,4-乙撑二氧噻吩)(PEDOT)作为一种成膜性好、热稳定性高、电导率可调且廉价的透明导电高分子材料,在多种能量转换和储存器件中有着诱人的应用前景。然而,较低的电导率等因素制约了基于PEDOT组装的各类器件的实际性能。本文首先简述了PEDOT薄膜的基本性质、常用的化学与物理制备途径以及提高电导率的几种方式,随后综述了PEDOT以及PEDOT和其他物相构成的复合结构在包括太阳能电池、发光二极管、电致变色器件和超级电容器等器件中的应用的最新进展。其中,不仅阐述了PEDOT基材料在上述器件中所起的作用,还详细介绍了针对不同器件对PEDOT基材料的要求,研究人员提出的PEDOT基材料的设计思路,包括设计具有特定微观形貌的PEDOT薄膜、对PEDOT薄膜的电导率、功函数和透光度等进行调控以及将PEDOT和碳材料、金属纳米颗粒、金属氧化物等其他物相进行复合。最后指出了目前在PEDOT基电极材料的研究中面临的挑战,并对该材料的研究前景进行了展望。
As a kind of low-cost transparent conductive material with good film-forming properties, high thermal stability and tunable conductivity, poly(3,4-ethylenedioxythiophene)(PEDOT) has exhibited attractive applications in various energy conversion and storage devices. However, the performances of these devices are restricted by some drawbacks of PEDOT, mainly its low conductivity. In this review, firstly the basic properties, commonly adopted chemical and physical approaches for synthesizing PEDOT films and several ways to improve their conductivity are briefly introduced. Then the latest research progresses of devices including solar cells, light-emitting diodes, electrochromic devices and supercapacitors assembled by PEDOT and PEDOT-based composited materials are reviewed. In addition to elucidating the roles of PEDOT-based materials played in the aforementioned devices, the design ideas of PEDOT-based materials proposed by researchers for fulfilling the requirements of different devices are introduced in detail. The ideas include designing PEDOT films with specific microstructures, modulating the conductivity, work function, optical transparency and other properties of PEDOT, and coupling PEDOT with other active materials such as carbon materials, metal nanoparticles and metal oxides. Finally, the challenges nowadays in the studying of PEDOT-based electrode materials are pointed out, and the prospect of these materials is proposed.
Contents
1 Introduction
2 Preparation and modification of PEDOT based electrode materials
2.1 Preparation of PEDOT based electrode materials
2.2 Modification of PEDOT based electrode materials
3 Applications of PEDOT based electrode materials
3.1 Solar cells
3.2 Light-emitting diodes
3.3 Electrochromic devices
3.4 Supercapacitors
3.5 Other devices
3.6 Working mechanisms of PEDOT based electrode materials
4 Conclusion

中图分类号: 

()
[1] Zhu Z Z, Mankowski T, Balakrishnan K, Shikoh A S, Touati F, Benammar M A, Mansuripur M, Falco C M. ACS Appl. Mater. Interfaces, 2015, 7(30):16223.
[2] Cheng T, Zhang Y Z, Lai W Y, Chen Y, Zeng W J, Huang W. J. Mater. Chem. C, 2014, 2(48):10369.
[3] Cha S, Cha M, Lee S, Kang J H, Kim C. Sci. Rep., 2015, 5:17877.
[4] Worfolk B J, Andrews S C, Park S, Reinspach J, Liu N, Toney M F, Mannsfeld S C B, Bao Z N. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(46):14138.
[5] 杜续生(Du X S), 佘平平(She P P), 汪正浩(Wang Z H). 化学学报(Acta Chim. Sinica), 2003, 61(4):536.
[6] 蒋丰兴(Jiang F X), 徐景坤(Xu J K). 江西科技师范大学学报(J. Jiangxi Sci. Technol. Normal Univ.), 2013(6):36.
[7] 李昱煜(Li Y Y), 沈沪江(Shen H J), 刘岩(Liu Y), 王炜(Wang W), 袁慧慧(Yuan H H), 谢华清(Xie H Q). 材料导报(Mater. Rev.), 2017, 31(7):19.
[8] Anothumakkool B, Soni R, Bhange S N, Kurungot S. Energy Environ. Sci., 2015, 8(4):1339.
[9] Rajesh M, Justin Raj C, Kim B C, Manikandan R, Kim K H, Park S Y, Yu K H. Electrochim. Acta, 2017, 240:231.
[10] Zhao X, Dong M Y, Zhang J X, Li Y Z, Zhang Q H. Nanotechnology, 2016, 27(38):385705.
[11] Edberg J, Iandolo D, Brooke R, Liu X J, Musumeci C, Andreasen J W, Simon D T, Evans D, Engquist I, Berggren M. Adv. Funct. Mater., 2016, 26(38):6950.
[12] Koch L, Polek A, Rudd S, Evans D. ACS Appl. Mater. Interfaces, 2017, 9(1):65.
[13] Du X, Wang Z. Electrochim. Acta, 2003, 48(12):1713.
[14] Cysewska K, Karczewski J, Jasiński P. Electrochim. Acta, 2015, 176:156.
[15] Imae I, Fujimoto D, Zhang L, Harima Y. Electrochem. Commun., 2017, 81:65.
[16] Wen Y P, Xu J K. J. Polym. Sci., Part A:Polym. Chem., 2017, 55(7):1121.
[17] Li W P, Zhang X L, Zhang X, Yao J N, Zhan C L. ACS Appl. Mater. Interfaces, 2017, 9(2):1446.
[18] Yun D J, Jeong Y J, Ra H, Kim J M, Park J H, Park S H, An T K, Seol M, Park C E, Jang J, Chung D S. J. Phys. Chem. C, 2016, 120(20):10919.
[19] Lee I, Kim G W, Yang M, Kim T S. ACS Appl. Mater. Interfaces, 2016, 8(1):302.
[20] Xu S J, Luo Y F, Liu G W, Qiao G J, Zhong W, Xiao Z H, Luo Y P, Ou H. Electrochim. Acta, 2015, 156:20.
[21] Zhang W F, Zhao B F, He Z C, Zhao X M, Wang H T, Yang S F, Wu H B, Cao Y. Energy Environ. Sci., 2013, 6(6):1956.
[22] Xia Y J, Ouyang J Y. Macromolecules, 2009, 42(12):4141.
[23] Ouyang J Y, Chu C W, Chen F C, Xu Q F, Yang Y. Adv. Funct. Mater., 2005, 15(2):203.
[24] Stempien Z, Rybicki E, Rybicki T, Kozanecki M. Synth. Met., 2016, 217:276.
[25] Istamboulie G, Sikora T, Jubete E, Ochoteco E, Marty J L, Noguer T. Talanta, 2010, 82(3):957.
[26] Gomes L, Branco A, Moreira T, Feliciano F, Pinheiro C, Costa C. Sol. Energy Mater. Sol. Cells, 2016, 144:631.
[27] Alhashmi Alamer F. J. Alloys Compd., 2017, 702:266.
[28] Liu J, Wang X J, Li D Y, Coates N E, Segalman R A, Cahill D G. Macromolecules, 2015, 48(3):585.
[29] Yeon C, Kim G, Lim J W, Yun S J. RSC Adv., 2017, 7(10):5888.
[30] Ryan J D, Mengistie D A, Gabrielsson R, Lund A, Müller C. ACS Appl. Mater. Interfaces, 2017, 9(10):9045.
[31] Bessaire B, Mathieu M, Salles V, Yeghoyan T, Celle C, Simonato J P, Brioude A. ACS Appl. Mater. Interfaces, 2017, 9(1):950.
[32] Kim J Y, Jung J H, Lee D E, Joo J. Synth. Met., 2002, 126(2/3):311.
[33] Ouyang J Y, Xu Q F, Chu C W, Yang Y, Li G, Shinar J. Polymer, 2004, 45(25):8443.
[34] Alemu D, Wei H Y, Ho K C, Chu C W. Energy Environ. Sci., 2012, 5(11):9662.
[35] Fan Z, Du D H, Yu Z M, Li P C, Xia Y J, Ouyang J Y. ACS Appl. Mater. Interfaces, 2016, 8(35):23204.
[36] Xia Y J, Sun K, Ouyang J Y. Adv. Mater., 2012, 24(18):2436.
[37] Fan X, Xu B G, Liu S H, Cui C H, Wang J Z, Yan F. ACS Appl. Mater. Interfaces, 2016, 8(22):14029.
[38] Yao B W, Wang H Y, Zhou Q, Wu M M, Zhang M, Li C, Shi G Q. Adv. Mater., 2017, 29(28):1700974.
[39] Kim N, Kang H, Lee J H, Kee S, Lee S H, Lee K. Adv. Mater., 2015, 27(14):2317.
[40] Gueye M N, Carella A, Massonnet N, Yvenou E, Brenet S, Faure-Vincent J, Pouget S, Rieutord F, Okuno H, Benayad A, Demadrille R, Simonato J P. Chem. Mater., 2016, 28(10):3462.
[41] Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J, Lee K. Adv. Mater., 2014, 26(14):2268.
[42] Wei Q S, Mukaida M, Naitoh Y, Ishida T. Adv. Mater., 2013, 25(20):2831.
[43] Nevrela J, Micjan M, Novota M, Kovacova S, Pavuk M, Juhasz P, Kovac Jr. J, Jakabovic J, Weis M. J. Polym. Sci., Part B:Polym. Phys., 2015, 53(16):1139.
[44] Yin H E, Lee C F, Chiu W Y. Polymer, 2011, 52(22):5065.
[45] Dupont S R, Novoa F, Voroshazi E, Dauskardt R H. Adv. Funct. Mater., 2014, 24(9):1325.
[46] Döbbelin M, Marcilla R, Tollan C, Pomposo J A, Sarasua J R, Mecerreyes D. J. Mater. Chem., 2008, 18(44):5354.
[47] Hossain J, Liu Q M, Miura T, Kasahara K, Harada D, Ishikawa R, Ueno K, Shirai H. ACS Appl. Mater. Interfaces, 2016, 8(46):31926.
[48] Li Y, Mao L, Tang F, Chen Q, Wang Y X, Ye F Y, Chen L, Li Y W, Wu D, Cui Z, Cai J H, Chen L W. Sol. Energy Mater. Sol. Cells, 2015, 143:354.
[49] Zhang H, Xu J K, Wen Y P, Wang Z F, Zhang J, Ding W C. Synth. Met., 2015, 204:39.
[50] Dupont S R, Oliver M, Krebs F C, Dauskardt R H. Sol. Energy Mater. Sol. Cells, 2012, 97:171.
[51] Wei B, Liu J L, Ouyang L Q, Kuo C C, Martin D C. ACS Appl. Mater. Interfaces, 2015, 7(28):15388.
[52] Yohannes T, Inganäs O. Sol. Energy Mater. Sol. Cells, 1998, 51(2):193.
[53] Saito Y, Kitamura T, Wada Y, Yanagida S. Chem. Lett., 2002, 31(10):1060.
[54] 马廷丽(Ma T L), 云斯宁(Yun S N). 染料敏化太阳能电池——从理论基础到技术应用(Dye-Sensitized Solar Cells-Theoretical Basis to Technical Application). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2013. 227.
[55] 赵志强(Zhao Z Q). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2015.
[56] 刘俊琛(Liu J C). 深圳大学硕士论文(Master Dissertation of Shenzhen University), 2016.
[57] Ellis H, Vlachopoulos N, Häggman L, Perruchot C, Jouini M, Boschloo G, Hagfeldt A. Electrochim. Acta, 2013, 107:45.
[58] Yang Y, Lee K, Mielczarek K, Hu W, Zakhidov A. Nanotechnology, 2011, 22(48):485301.
[59] Lee T H, Do K, Lee Y W, Jeon S S, Kim C, Ko J, Im S S. J. Mater. Chem., 2012, 22(40):21624.
[60] Li H G, Xiao Y M, Han G Y, Hou W J. J. Power Sources, 2017, 342:709.
[61] Mukherjee S, Singh R, Gopinathan S, Murugan S, Gawali S, Saha B, Biswas J, Lodha S, Kumar A. ACS Appl. Mater. Interfaces, 2014, 6(20):17792.
[62] Huang D, Goh T H, Kong J, Zheng Y F, Zhao S L, Xu Z, Taylor A D. Nanoscale, 2017, 9(12):4236.
[63] Hu A F, Tan L C, Hu X T, Hu L, Ai Q Y, Meng X C, Chen L, Chen Y W. J. Mater. Chem. C, 2017, 5(2):382.
[64] Shin D, Kim T, Ahn B T, Han S M. ACS Appl. Mater. Interfaces, 2015, 7(24):13557.
[65] Kim Y S, Lee E J, Lee J T, Hwang D K, Choi W K, Kim J Y. RSC Adv., 2016, 6(69):64428.
[66] Hu X T, Chen L, Tan L C, Ji T, Zhang Y, Zhang L, Zhang D, Chen Y W. J. Mater. Chem. A, 2016, 4(17):6645.
[67] Ji T, Tan L C, Bai J X, Hu X T, Xiao S Q, Chen Y W. Carbon, 2016, 98:15.
[68] Li H G, Xiao Y M, Han G Y, Zhang Y. Org. Electron., 2017, 50:161.
[69] Yoon S, Ha T J, Kang D W. Nanoscale, 2017, 9(27):9754.
[70] Kim J M, Kwon W, Rhee S W. Electrochim. Acta, 2015, 161:205.
[71] Lin Y F, Li C T, Ho K C. J. Mater. Chem. A, 2016, 4(2):384.
[72] Yeh M H, Lin L Y, Li Y Y, Chang J, Chen P W, Lee C P, Ho K C. Jpn. J. Appl. Phys., 2012, 51:10NE01.
[73] Huang Y J, Fan M S, Li C T, Lee C P, Chen T Y, Vittal R, Ho K C. Electrochim. Acta, 2016, 211:794.
[74] Luo H, Lin X H, Hou X, Pan L K, Huang S M, Chen X H. Nano-Micro Lett., 2017, 9(4):39.
[75] Liu D Y, Li Y, Yuan J Y, Hong Q M, Shi G Z, Yuan D X, Wei J, Huang C C, Tang J X, Fung M K. J. Mater. Chem. A, 2017, 5(12):5701.
[76] Pringle J M, Armel V, MacFarlane D R. Chem. Commun., 2010, 46(29):5367.
[77] Lee C P, Lai K Y, Lin C A, Li C T, Ho K C, Wu C I, Lau S P, He J H. Nano Energy, 2017, 36:260.
[78] Garcia-Valverde R, Villarejo J A, Hösel M, Madsen M V, Søndergaard R R, Jørgensen M, Krebs F C. Sol. Energy Mater. Sol. Cells, 2016, 144:48.
[79] Zhang J B, Vlachopoulos N, Jouini M, Johansson M B, Zhang X L, Nazeeruddin M K, Boschloo G, Johansson E M J, Hagfeldt A. Nano Energy, 2016, 19:455.
[80] Wang J, Fei F, Luo Q, Nie S H, Wu N, Chen X L, Su W M, Li Y J, Ma C Q. ACS Appl. Mater. Interfaces, 2017, 9(8):7834.
[81] 王佳(Wang J). 吉林大学博士论文(Doctoral Dissertation of Jilin University), 2016.
[82] 李盛彪(Li S B), 张晔(Zhang Y), 牛巧莉(Niu Q L), 赵雷(Zhao L), 范曲立(Fan Q L), 彭波(Peng B), 朱旭辉(Zhu X H), 曹镛(Cao Y), 黄维(Huang W). 化学学报(Acta Chim. Sinica), 2006, 64(24):2509.
[83] Wang J, Zhang H, Ji W, Zhang H Z. Synth. Met., 2015, 209:484.
[84] Yousefi M H, Fallahzadeh A, Saghaei J, Darareh M D. J. Disp. Technol., 2016, 12(12):1647.
[85] Wu X K, Liu J, He G F. Org. Electron., 2015, 22:160.
[86] 赵丹(Zhao D), 徐登辉(Xu D H), 杨在发(Yang Z F), 曹伟强(Cao W Q). 发光学报(Chin. J. Lumin.), 2016, 37(2):174.
[87] Li Y D, Liu M Y, Li Y, Yuan K, Xu L J, Yu W, Chen R F, Qiu X Q, Yip H L. Adv. Energy Mater., 2017, 7(6):1601499.
[88] Kim J H, Joo C W, Lee J, Seo Y K, Han J W, Oh J Y, Kim J S, Yu S, Lee J H, Lee J I, Yun C, Choi B H, Kim Y H. Macromol. Rapid Commun., 2016, 37(17):1427.
[89] Seo Y K, Joo C W, Lee J, Han J W, Lee D J, Entifar S A N, Kim S, Cho N S, Kim Y H. J. Lumin., 2017, 187:221.
[90] Montanino M, Sico G, Prontera C T, De Girolamo Del Mauro A, Aprano S, Maglione M G, Minarini C. eXPRESS Polym. Lett., 2017, 11(6):518.
[91] Kim Y Y, Hyun W J, Park K H, Ye S J, Park O O. Korean J. Chem. Eng., 2015, 32(3):534.
[92] Liu Y S, Feng J, Ou X L, Cui H F, Xu M, Sun H B. Org. Electron., 2016, 31:247.
[93] Wei B W, Wu X K, Lian L, Yang S, Dong D, Feng D X, He G F. Org. Electron., 2017, 43:182.
[94] 杨君礼(Yang J L), 武聪伶(Wu C L), 李源浩(Li Y H), 李菀丽(Li W L), 苗艳勤(Miao Y Q), 郭鹍鹏(Guo K P), 刘慧慧(Liu H H), 王华(Wang H), 吴永安(Wu Y A). 物理化学学报(Acta Phys. -Chim. Sin.), 2015, 31(2):377.
[95] Wu X K, Lian L, Yang S, He G F. J. Mater. Chem. C, 2016, 4(36):8528.
[96] Kim J, Kanwat A, Kim H M, Jang J. Phys. Status Solidi A, 2015, 212(3):640.
[97] Kim H M, Kim J, Lee J, Jang J. ACS Appl. Mater. Interfaces, 2015, 7(44):24592.
[98] Gupta N, Grover R, Mehta D S, Saxena K. Displays, 2015, 39:104.
[99] Gupta N, Grover R, Mehta D S, Saxena K. Synth. Met., 2016, 221:261.
[100] Zhang H, Sun X W, Chen S M. Adv. Funct. Mater., 2017, 27(21):1700610.
[101] Bade S G R, Shan X, Hoang P T, Li J Q, Geske T, Cai L, Pei Q B, Wang C, Yu Z B. Adv. Mater., 2017, 29(23):1607053.
[102] Zhang X W, You F J, Liu S Q, Mo B J, Zhang Z L, Xiong J, Cai P, Xue X G, Zhang J, Wei B. Appl. Phys. Lett., 2017, 110(4):043301.
[103] 张航川(Zhang H C). 哈尔滨工业大学硕士论文(Master Dissertation of Harbin Institute of Techonology), 2015.
[104] 腊明(La M), 刘平(Liu P), 邓文基(Deng W J). 化学进展(Prog. Chem.), 2009, 21(6):1268.
[105] Pei Q B, Zuccarello G, Ahlskog M, Inganäs O. Polymer, 1994, 35(7):1347.
[106] Kawahara J, Ersman P A, Engquist I, Berggren M. Org. Electron., 2012, 13(3):469.
[107] Augusto T, Teixeira Neto É, Teixeira Neto A A, Vichessi R, Vidotti M, de Torresi S I C. Sol. Energy Mater. Sol. Cells, 2013, 118:72.
[108] Cao Y, Tao Y J, Cheng H F, Zhang Z Y. J. Appl. Polym. Sci., 2013, 129(6):3764.
[109] Zhang Z Y, Tao Y J, Xu X Q, Zhou Y J, Cheng H F, Zheng W W. J. Appl. Polym. Sci., 2013, 129(3):1506.
[110] Singh R, Tharion J, Murugan S, Kumar A. ACS Appl. Mater. Interfaces, 2017, 9(23):19427.
[111] Zhang H C, Qu H Y, Lv H M, Hou S, Zhang K, Zhao J P, Li X G, Frank E, Li Y. Chem. -Asian J., 2016, 11(20):2882.
[112] Brooke R, Mitraka E, Sardar S, Sandberg M, Sawatdee A, Berggren M, Crispin X, Jonsson M P. J. Mater. Chem. C, 2017, 5(23):5824.
[113] 秦咪咪(Qin M M), 李昕(Li X), 郑一平(Zheng Y P), 张焱(Zhang Y), 李从举(Li C J). 化学学报(Acta Chim. Sinica), 2015, 73(11):1161.
[114] Fonseca S M, Moreira T, Parola A J, Pinheiro C, Laia C A T. Sol. Energy Mater. Sol. Cells, 2017, 159:94.
[115] Ling H, Lu J L, Phua S, Liu H, Liu L, Huang Y Z, Mandler D, Lee P S, Lu X H. J. Mater. Chem. A, 2014, 2(8):2708.
[116] Ling H, Liu L, Lee P S, Mandler D, Lu X. Electrochim. Acta, 2015, 174:57.
[117] Nguyen T T N, Chan C Y, He J L. Thin Solid Films, 2016, 603:276.
[118] Dulgerbaki C, Nohut Maslakci N, Komur A I, Uygun Oksuz A. Electroanalysis, 2016, 28(8):1873.
[119] Qu H Y, Zhang X, Zhang H C, Tian Y L, Li N, Lv H M, Hou S, Li X G, Zhao J P, Li Y. Sol. Energy Mater. Sol. Cells, 2017, 163:23.
[120] Cai G F, Darmawan P, Cui M Q, Wang J X, Chen J W, Magdassi S, Lee P S. Adv. Energy Mater., 2016, 6(4):1501882.
[121] Kateb M, Safarian S, Kolahdouz M, Fathipour M, Ahamdi V. Sol. Energy Mater. Sol. Cells, 2016, 145:200.
[122] Karaca G Y, Eren E, Alver C, Koc U, Uygun E, Oksuz L, Oksuz A U. Electroanalysis, 2017, 29(5):1324.
[123] 吕耀康(Lv Y K), 刘幼幼(Liu Y Y), 潘云(Pan Y), 刘刚(Liu G), 陈钧(Chen J), 郭芸(Guo Y), 初文静(Chu W J), 慎炼(Shen L), 张诚(Zhang C). 高等学校化学学报(Chem. J. Chin. Univ.), 2017, 38(3):484.
[124] Kai H, Suda W, Ogawa Y, Nagamine K, Nishizawa M. ACS Appl. Mater. Interfaces, 2017, 9(23):19513.
[125] 张思航(Zhang S H), 何永锋(He Y F), 付润芳(Fu R F), 蒋洁(Jiang J), 李晴碧(Li Q B), 顾迎春(Gu Y C), 陈胜(Chen S). 高等学校化学学报(Chem. J. Chin. Univ.), 2017, 38(6):1090.
[126] Carlberg J C, Inganäs O. J. Electrochem. Soc., 1997, 144(4):L61.
[127] Higgins T M, Coleman J N. ACS Appl. Mater. Interfaces, 2015, 7(30):16495.
[128] Zhou W Q, Xu J K. Electrochim. Acta, 2016, 222:1895.
[129] Yuan D M, Li B, Cheng J L, Guan Q, Wang Z P, Ni W, Li C, Liu H, Wang B. J. Mater. Chem. A, 2016, 4(30):11616.
[130] Yang H, Liu Y, Wang Z D, Liu Y M, Du H Y, Hao X G. J. Appl. Polym. Sci., 2016, 133(20):43418.
[131] Vellacheri R, Zhao H P, Mühlstädt M, Al-Haddad A, Jandt K D, Lei Y. Adv. Funct. Mater., 2017, 27(18):1606696.
[132] Liu A D, Kovacik P, Peard N, Tian W, Goktas H, Lau J, Dunn B, Gleason K K. Adv. Mater., 2017, 29(19):1606091.
[133] Zhou H H, Han G Y, Fu D Y, Chang Y Z, Xiao Y M, Zhai H J. J. Power Sources, 2014, 272:203.
[134] Lee H U, Kim S W. J. Mater. Chem. A, 2017, 5(26):13581.
[135] Zhang N, Zhou W Y, Zhang Q, Luan P S, Cai L, Yang F, Zhang X, Fan Q X, Zhou W B, Xiao Z J, Gu X G, Chen H L, Li K W, Xiao S Q, Wang Y C, Liu H P, Xie S S. Nanoscale, 2015, 7(29):12492.
[136] Karade S S, Sankapal B R. J. Electroanal. Chem., 2016, 771:80.
[137] Zhao D W, Zhang Q, Chen W S, Yi X, Liu S X, Wang Q W, Liu Y X, Li J, Li X F, Yu H P. ACS Appl. Mater. Interfaces, 2017, 9(15):13213.
[138] Cho S, Kim M, Jang J. ACS Appl. Mater. Interfaces, 2015, 7(19):10213.
[139] Zhang C F, Higgins T M, Park S H, O'Brien S E, Long D H, Coleman J N, Nicolosi V. Nano Energy, 2016, 28:495.
[140] Chen Y, Xu J H, Yang Y J, Zhao Y T, Yang W Y, Mao X L, He X, Li S B. Electrochim. Acta, 2016, 193:199.
[141] Moussa M, Shi G, Wu H, Zhao Z H, Voelcker N H, Losic D, Ma J. Mater. Des., 2017, 125:1.
[142] Lee H U, Yin J L, Park S W, Park J Y. Synth. Met., 2017, 228:84.
[143] Yang H L, Xu H H, Li M, Zhang L, Huang Y H, Hu X L. ACS Appl. Mater. Interfaces, 2016, 8(3):1774.
[144] Li Y N, Ren G Y, Zhang Z Q, Teng C, Wu Y Z, Lu X Y, Zhu Y, Jiang L. J. Mater. Chem. A, 2016, 4(44):17324.
[145] Xie Y B, Du H X, Xia C. Microporous Mesoporous Mater., 2015, 204:163.
[146] Ge Y, Jalili R, Wang C Y, Zheng T, Chao Y F, Wallace G G. Electrochim. Acta, 2017, 235:348.
[147] Zhang M, Han D H, Lu P X. Electrochim. Acta, 2017, 238:330.
[148] Cho B, Park K S, Baek J, Oh H S, Koo Lee Y E, Sung M M. Nano Lett., 2014, 14(6):3321.
[149] Mayousse C, Celle C, Carella A, Simonato J P. Nano Research, 2014, 7(3):315.
[150] Fan Z, Du D H, Yao H Y, Ouyang J Y. ACS Appl. Mater. Interfaces, 2017, 9(13):11732.
[151] Beretta D, Barker A J, Maqueira-Albo I, Calloni A, Bussetti G, Dell'Erba G, Luzio A, Duò L, Petrozza A, Lanzani G, Caironi M. ACS Appl. Mater. Interfaces, 2017, 9(21):18151.
[152] Chong B H, Zhu W, Hou X H. J. Mater. Chem. A, 2017, 5(13):6233.
[153] 郭亚芳(Guo Y F). 天津大学硕士论文(Master Dissertation of Tianjin University), 2010.
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[3] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[6] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[7] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[8] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[9] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[10] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[11] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[12] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[13] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[14] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[15] 赵少飞, 刘鹏, 程高, 余林, 曾华强. 自支撑硫镍基电极材料制备及其赝电容性能[J]. 化学进展, 2020, 32(10): 1582-1591.