English
新闻公告
More
化学进展 2017, Vol. 29 Issue (4): 400-411 DOI: 10.7536/PC161213 前一篇   后一篇

• 综述 •

体异质结型聚合物太阳能电池中的微观形貌调控方法

康建喜1,2,3, 王世荣1,2,3, 孙孟娜1,2,3, 刘红丽1,2,3, 李祥高1,2,3*   

  1. 1. 天津大学化工学院 天津 300350;
    2. 天津化学化工协同创新中心 天津 300072;
    3. 天津市功能精细化学品技术工程中心 天津 300072
  • 收稿日期:2016-12-08 修回日期:2017-01-12 出版日期:2017-04-15 发布日期:2017-03-31
  • 通讯作者: 李祥高,e-mail:lixianggao@tju.edu.cn E-mail:lixianggao@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21676188)和天津市自然科学基金项目(No.16JCZDJC37100)资助

Regulation Methods for Micro-Morphology of Bulk Heterojunction Polymer Solar Cells

Jianxi Kang1,2,3, Shirong Wang1,2,3, Mengna Sun1,2,3, Hongli Liu1,2,3, Xianggao Li1,2,3*   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China;
    3. Tianjin Engineering Center of Functional Fine Chemicals, Tianjin 300072, China
  • Received:2016-12-08 Revised:2017-01-12 Online:2017-04-15 Published:2017-03-31
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21676188) and the Natural Science Foundation of Tianjin (No.16JCZDJC37100).
体异质结型聚合物太阳能电池因具有成本低、质量轻、制备工艺简单和柔韧性好等优点,成为光伏技术领域的研究热点,其能量转化效率超过11%。体异质结层作为体异质结型聚合物太阳能电池的核心,其微观形貌影响体异质结型聚合物太阳能电池的开路电压、填充因子和短路电流,进而影响其能量转化效率。因此如何有效调控体异质结的微观形貌是提高体异质结型聚合物太阳能电池能量转换效率的关键问题之一。本文系统介绍了体异质结的形成过程,总结和论述近年发展的体异质结的微观形貌调控方法,以期为体异质结型聚合物太阳能电池的制备提供指导和借鉴。
Bulk heterojunction polymer solar cells have become one of the research hotspots in the field of photovoltaic technology due to their low production cost, light weight, simple preparation process, good flexibility and so on. Bulk heterojunction polymer solar cells have achieved energy conversion efficiency of more than 11%. The bulk heterojunction layer is the key point of the bulk heterojunction polymer solar cells and its micro-morphology has an influence on the energy conversion efficiency by affecting the open-circuit voltage, fill factor and short-circuit current of the bulk heterojunction polymer solar cells. So how to effectively control the micro-morphology of the bulk heterojunction is one of the key issues for improving the energy conversion efficiency of bulk heterojunction polymer solar cells. In this paper, the formation process of bulk heterojunction is introduced, and the micro-morphology control methods of bulk heterojunction developed in recent years are systematically summarized and discussed to provide guidance and reference for the preparation of the bulk heterojunction polymer solar cells.

Contents
1 Introduction
2 The formation process of organic bulk heterojunction
3 Regulation for micro-morphology of bulk heterojunction
3.1 Regulation for micro-morphology of bulk heterojunction by solvent-induced
3.2 Regulation for micro-morphology of bulk heterojunction by thermal annealing
3.3 Regulation for micro-morphology of bulk heterojunction by the ratio of donor and acceptor
4 Conclusion

中图分类号: 

()
[1] Kallmann H, Pope M. J. Chem. Phys., 1959, 30(2): 585.
[2] Tang C W. Appl. Phys. Lett., 1986, 48(2): 183.
[3] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789.
[4] Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B. Nature, 1995, 376(6540): 498.
[5] Yu G, Heeger A J. J. Appl. Phys., 1995, 78 (7): 4510.
[6] Shaheen S E, Brabec C J, Sariciftci N S, Padinger F, Fromherz T, Hummelen J C. Appl. Phys. Lett., 2001, 78(6): 841.
[7] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Nat. Photon., 2009, 3(5): 297.
[8] Padinger F, Rittberger R S, Sariciftci N S. Adv. Funct. Mater., 2003, 13(1): 85.
[9] Dittmer J J, Marseglia E A, Friend R H. Adv. Mater., 2000, 12(17): 1270.
[10] Liu J, Chen L, Gao B, Cao X, Han Y, Xie Z, Wang L. J. Mater. Chem. A, 2013, 1(20): 6216.
[11] Bull T A, Pingree L S C, Jenekhe S A, Ginger D S, Luscombe C K. ACS Nano, 2009, 3(3): 627.
[12] Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Nat. Mater., 2007, 6(7): 497.
[13] Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C, Heeger A J. J. Am. Chem. Soc., 2008, 130(11): 3619.
[14] Silvestri F, Irwin M D, Beverina L, Facchetti A, Pagani G A, Marks T J. J. Am. Chem. Soc., 2008, 130(52): 17640.
[15] Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell T P, Chen Y. J. Am. Chem. Soc., 2015, 137(11): 3886.
[16] Van Pruissen G W P, Gholamrezaie F, Wienk M M, Janssen R A J. J. Mater. Chem., 2012, 22(38): 20387.
[17] Dou L, Gao J, Richard E, You J, Chen C C, Cha K C, He Y, Li G, Yang Y. J. Am. Chem. Soc., 2012, 134(24): 10071.
[18] Marsh R A, Hodgkiss J M, Albert-Seifried S, Friend R H. Nano Lett., 2010, 10(3): 923.
[19] Moulé A J, Meerholz K. Adv. Mater., 2008, 20(2): 240.
[20] Chen D, Nakahara A, Wei D, Nordlund D, Russell T P. Nano Lett., 2011, 11(2): 561.
[21] Yao Y, Hou J, Xu Z, Li G, Yang Y. Adv. Funct. Mater., 2008, 18(12): 1783.
[22] Brabec C, Dyakonov V, Scherf U. Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies. Wiley-VCH, 2008.
[23] Kim K, Liu J, Namboothiry M A G, Carroll D L. Appl. Phys. Lett., 2007, 90(16): 163511.
[24] Dang M T, Wantz G, Bejbouji H, Urien M, Dautel O J, Vignau L, Hirsch L. Sol. Energy Mater. Sol. Cells, 2011, 95(12): 3408.
[25] Kumar V, Wang H, Rodenburg C. Org. Electron., 2014, 15(9): 2059.
[26] Zhu E, Luo G, Liu Y, Yu J, Zhang F, Che G, Wu H, Tang W. J. Mater. Chem. C, 2015, 3(7): 1595.
[27] Rispens M T, Meetsma A, Rittberger R, Brabec C J, Sariciftci N S, Hummelen J C. Chem. Commun., 2003, (17): 2116.
[28] Wienk M M, Kroon J M, Verhees W J H, Knol J, Hummelen J C, van Hal P A, Janssen R A J. Angew. Chem., 2003, 115(29): 3493.
[29] Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci N S. Adv. Funct. Mater., 2004, 14(10): 1005.
[30] Fang G, Liu J, Fu Y, Meng B, Zhang B, Xie Z, Wang L. Org. Electron., 2012, 13(11): 2733.
[31] Yang S, Zhang Y, Jiang T, Sun X, Lu C, Li G, Li X, Fu G. Chin. Sci. Bull., 2013, 59(3): 297.
[32] Park S H, Roy A, Beaupré S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Nature Photonics, 2009, 3(5): 297.
[33] Ruderer M A, Guo S, Meier R, Chiang H Y, Körstgens V, Wiedersich J, Perlich J, Roth S V, Müller-Buschbaum P. Adv. Funct. Mater., 2011, 21(17): 3382.
[34] Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D D, Nelson J. Nat. Mater., 2008, 7(2): 158.
[35] Diethert A, Peykova Y, Willenbacher N, Müller-Buschbaum P. ACS Appl. Mater. Interfaces, 2010, 2(7): 2060.
[36] Huo L, Liu T, Sun X, Cai Y, Heeger A J, Sun Y. Adv. Mater., 2015, 27(18): 2938.
[37] Guo X, Zhou N, Lou S J, Smith J, Tice D B, Hennek J W, Ortiz R P, Navarrete J T L, Li S, Strzalka J, Chen L X, Chang R P H, Facchetti A, Marks T J. Nature Photonics, 2013, 7(10): 825.
[38] Wienk M M, Turbiez M, Gilot J, Janssen R A J. Adv. Mater., 2008, 20(13): 2556.
[39] Liu F, Gu Y, Wang C, Zhao W, Chen D, Briseno A L, Russell T P. Adv. Mater., 2012, 24(29): 3947.
[40] Zhang F, Jespersen K G, Björström C, Svensson M, Andersson M R, Sundström V, Magnusson K, Moons E, Yartsev A, Inganãs O. Adv. Funct. Mater., 2006, 16(5): 667.
[41] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nature Energy, 2016, 1: 15027.
[42] Etzold F, Howard I A, Forler N, Cho D M, Meister M, Mangold H, Shu J, Hansen M R, Mullen K, Laquai F. J. Am. Chem. Soc., 2012, 134(25): 10569.
[43] Su M S, Kuo C Y, Yuan M C, Jeng U S, Su C J, Wei K H. Adv. Mater., 2011, 23(29): 3315.
[44] Rogers J T, Schmidt K, Toney M F, Kramer E J, Bazan G C. Adv. Mater., 2011, 23(20): 2284.
[45] Rogers J T, Schmidt K, Toney M F, Bazan G C, Kramer E J. J. Am. Chem. Soc., 2012, 134(6): 2884.
[46] Liang Y, Xu Z, Xia J, Tsai S T, Wu Y, Li G, Ray C, Yu L. Adv. Mater., 2010, 22(20): E135.
[47] Lou S J, Szarko J M, Xu T, Yu L, Marks T J, Chen L X. J. Am. Chem. Soc., 2011, 133(51): 20661.
[48] Collins B A, Li Z, Tumbleston J R, Gann E, McNeill C R, Ade H. Adv. Energy Mater., 2013, 3(1): 65.
[49] Hammond M R, Kline R J, Herzing A A, Richter L J, Germack D S, Ro H W, Soles C L, Fischer D A, Xu T, Yu L, Toney M F, DeLongchamp D M. ACS Nano, 2011, 5(10): 8248.
[50] Zhao G, He Y, Li Y. Adv. Mater., 2010, 22(39): 4355.
[51] Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv. Funct. Mater., 2007, 17(10): 1636.
[52] Chen Y C, Yu C Y, Fan Y L, Hung L I, Chen C P, Ting C. Chem. Commun. (Camb.), 2010, 46(35): 6503.
[53] Jo J, Na S I, Kim S S, Lee T W, Chung Y, Kang S J, Vak D, Kim D Y. Adv. Funct. Mater., 2009, 19(15): 2398.
[54] Hegde R, Henry N, Whittle B, Zang H, Hu B, Chen J, Xiao K, Dadmun M. Sol. Energy Mater. Sol. Cells, 2012, 107: 112.
[55] Mihailetchi V D, Xie H, de Boer B, Popescu L M, Hummelen J C, Blom P W, Koster L J A. Appl. Phys. Lett., 2006, 89(1): 012107.
[56] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. Nat. Mater., 2005, 4(11): 864.
[57] Shrotriya V, Yao Y, Li G, Yang Y. Appl. Phys. Lett., 2006, 89(6): 063505.
[58] Zhao Y, Yuan G, Roche P, Leclerc M. Poly., 1995, 36(11): 2211.
[59] Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec C J. Adv. Funct. Mater., 2005, 15(7): 1193.
[60] Ma W, Yang C, Gong X, Lee K, Heeger A J. Adv. Funct. Mater., 2005, 15(10): 1617.
[61] Park J K, Jo J, Seo J H, Moon J S, Park Y D, Lee K, Heeger A J, Bazan G C. Adv. Mater., 2011, 23(21): 2430.
[62] Huang Y, Kramer E J, Heeger A J, Bazan G C. Chem. Rev., 2014, 114(14): 7006.
[63] Blom P W M, Mihailetchi V D, Koster L J A, Markov D E. Adv. Mater., 2007, 19(12): 1551.
[64] Huang Y, Zhang M, Ye L, Guo X, Han C C, Li Y, Hou J. J. Mater. Chem., 2012, 22(12): 5700.
[65] Huang Y, Huo L, Zhang S, Guo X, Han C C, Li Y, Hou J. Chem. Commun. (Camb.), 2011, 47(31): 8904.
[66] Huang Y, Guo X, Liu F, Huo L, Chen Y, Russell T P, Han C C, Li Y, Hou J. Adv. Mater., 2012, 24(25): 3383.
[67] Zhang Y, Zou J, Yip H L, Chen K S, Zeigler D F, Sun Y, Jen A K Y. Chem. Mater., 2011, 23(9): 2289.
[68] Chirvase D, Parisi J, Hummelen J C, Dyakonov V. Nanotechnology, 2004, 15(9): 1317.
[69] Yang X, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J. Nano Lett., 2005, 5(4): 579.
[70] Chellappan V, Ng G M, Tan M J, Goh W P, Zhu F. Appl. Phys. Lett., 2009, 95(26): 263305.
[71] van Bavel S S, Bãrenklau M, de With G, Hoppe H, Loos J. Adv. Funct. Mater., 2010, 20(9): 1458.
[72] McCulloch I, Heeney M, Bailey C, Genevicius K, Macdonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc M L, Kline R J, McGehee M D, Toney M F. Nat. Mater., 2006, 5(4): 328.
[73] Parmer J E, Mayer A C, Hardin B E, Scully S R, McGehee M D, Heeney M, McCulloch I. Appl. Phys. Lett., 2008, 92(11): 113309.
[74] Chabinyc M L, Toney M F, Kline R J, McCulloch I, Heeney M. J. Am. Chem. Soc., 2007, 129(11): 3226.
[75] Mayer A C, Toney M F, Scully S R, Rivnay J, Brabec C J, Scharber M, Koppe M, Heeney M, McCulloch I, McGehee M D. Adv. Funct. Mater., 2009, 19(8): 1173.
[76] Miller N C, Cho E, Junk M J, Gysel R, Risko C, Kim D, Sweetnam S, Miller C E, Richter L J, Kline R J, Heeney M, McCulloch I, Amassian A, Acevedo-Feliz D, Knox C, Hansen M R, Dudenko D, Chmelka B F, Toney M F, Bredas J L, McGehee M D. Adv. Mater., 2012, 24(45): 6071.
[77] Hwang Y J, Earmme T, Courtright B A E, Eberle F N, Jenekhe S A. J. Am. Chem. Soc., 2015, 137(13): 4424.
[78] Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem. Rev., 2015, 115(23): 12666.
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[3] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[4] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[5] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[6] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[7] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[8] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[9] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[10] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[11] 王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 界面钝化策略:提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.
[12] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[13] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[14] 许頔, 沈沪江*, 袁慧慧, 王炜, 解俊杰. 聚(3,4-乙撑二氧噻吩)基电极材料:制备、改性及在电子器件中的应用[J]. 化学进展, 2018, 30(2/3): 252-271.
[15] 吴阳, 王再禹, 孟向毅, 马伟. 同步辐射共振软X射线散射对有机太阳能电池中活性层形貌的解析[J]. 化学进展, 2017, 29(1): 93-101.