English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 93-101 DOI: 10.7536/PC160444 前一篇   后一篇

• 综述 •

同步辐射共振软X射线散射对有机太阳能电池中活性层形貌的解析

吴阳, 王再禹, 孟向毅, 马伟*   

  1. 西安交通大学金属材料强度国家重点实验室 西安 710049
  • 收稿日期:2016-04-28 修回日期:2016-12-28 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 马伟 E-mail:msewma@xjtu.edu.cn
  • 基金资助:
    国家重点研发计划(No.2016YFA0200700)和国家自然科学基金项目(No.21504066,21534003)资助

Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering

Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma*   

  1. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2016-04-28 Revised:2016-12-28 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the National Key Reasearch and Development Plan (No.2016YFA0200700) and the National Natural Science Foundation of China (No.21504066, 21534003).
本体异质结有机太阳能电池的活性层形貌对器件性能有着直接的影响。目前广泛应用的形貌表征手段如透射电子显微镜、原子力显微镜等在有机薄膜材料的形貌表征中都存在一定的局限性。共振软X射线散射克服了常用表征手段在有机薄膜表征中对比度低、三维信息缺失等缺点,利用软X射线照射下材料折射率的巨大不同获得更高的对比度,对表征有机太阳能电池活性层的相分离情况、理解微观结构、建立光电转化过程和形貌之间的关系有着重要意义。本文概述了活性层形貌对本体异质结有机太阳能电池性能的影响,介绍了共振软X射线散射的发展历程、基本原理及分析方法。在此基础上,综述了共振软X射线散射在有机太阳能电池形貌问题中应用,并对其应用前景作了展望。
It is known that the active layer morphology of bulk heterojunction organic solar cells has significant impact on the performance of solar cell devices. However, the widely used morphology characterization methods such as transmission electron microscopy (TEM), atomic force microscopy (AFM) have certain limitations in the characterization of organic thin film materials. By using the huge difference of the refractive index of the different materials under the soft X-ray, resonant soft X-ray scattering (R-SoXS) provides highly enhanced contrast, overcomes the drawbacks such as low contrast between/among different organic components and the lack of 3D information, which is important to obtain the phase separation information in the active layer of organic solar cells, to understand the microstructure, and to establish the relationship between the morphology and the photoelectric conversion process. This article provides an overview of the effect of active layer morphology on the performance of bulk heterojunction organic solar cells, introduces the developing process, theoretical background and the analysis method of resonant soft X-ray scattering. Based on these, the application of resonant soft X-ray scattering in the study of the morphology of organic solar cells is reviewed. The application prospects of R-SoXS are also discussed.

Contents
1 Introduction
2 Effect of active layer morphology on the performance of organic solar cell devices
3 The development process of R-SoXS
4 Theoretical background and the analysis methodology of R-SoXS
4.1 Optical constant and contrast
4.2 The experimental process of R-SoXS
4.3 Extracting morphological information from R-SoXS data
5 Research Progress on morphology characterization of organic solar cells by R-SoXS
5.1 Polymer: fullerene based organic solar cells
5.2 Polymer: non-fullerene based organic solar cells
5.3 Ternary organic solar cells
6 Conclusion

中图分类号: 

()
[1] Li G, Zhu R, Yang Y. Nature Photonics, 2012, 6:153.
[2] Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Advanced Materials, 2016, 28:9423.
[3] Carpenter J H, Hunt A, Ade H. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200:2.
[4] Treat N D, Chabinyc M L. Annual Review of Physical Chemistry, 2014, 65:59.
[5] Deibel C, Dyakonov V. Reports on Progress in Physics, 2010, 73:096401.
[6] Taima T, Chikamatsu M, Yoshida Y, Saito K, Yase K. Applied Physics Letters, 2004, 85.
[7] Lunt R R, Giebink N C, Belak A A, Benziger J B, Forrest S R. Journal of Applied Physics, 2009, 105:053711.
[8] Shaw P E, Ruseckas A, Samuel I D W. Advanced Materials, 2008, 20:3516.
[9] Mukherjee S, Proctor C M, Bazan G C, Nguyen T Q, Ade H. Advanced Energy Materials, 2015, 27:1105.
[10] Tumbleston J R, Collins B A, Yang L, Stuart A C, Gann E, Ma W, You W, Ade H. Nature Photonics, 2014, 8:385.
[11] Steyrleuthner R, di Pietro R, Collins B A, Polzer F, Himmelberger S, Schubert M, Chen Z, Zhang S, Salleo A, Ade H, Facchetti A, Neher D. Journal of the American Chemical Society, 2014, 136:4245.
[12] Wang C, Garcia A, Yan H, Sohn K E, Hexemer A, Nguyen T, Bazan G C, Kramer E J, Ade H. Journal of the American Chemical Society, 2009, 131:12538.
[13] Wang C, Araki T, Watts B, Harton S, Koga T, Basu S, Ade H. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2007, 25:575.
[14] Swaraj S, Wang C, Yan H, Watts B, Luning J, McNeill C R, Ade H. Nano Lett, 2010, 10:2863.
[15] Gann E, Young A T, Collins B A, Yan H, Nasiatka J, Padmore H A, Ade H, Hexemer A, Wang C. The Review of Scientific Instruments, 2012, 83:045110.
[16] Young A T, Arenholz E, Marks S, Schlueter R, Steier C, Padmore H A, Hitchcock A P, Castner D G. Journal of Synchrotron Radiation, 2002, 9:270.
[17] Stöhr J. NEXAFS Spectroscopy. Vol. 25, Springer Science & Business Media, 2013.
[18] Yan H, Wang C, McCarn A R, Ade H. Phys. Rev. Lett., 2013, 110:177401.
[19] Collins B A, Cochran J E, Yan H, Gann E, Hub C, Fink R, Wang C, Schuettfort T, McNeill C. R, Chabinyc M L, Ade H. Nature Materials, 2012, 11:536.
[20] He Y, Li Y. Physical Chemistry Chemical Physics, 2011, 13:1970.
[21] Liu T, Troisi A. Advanced Materials, 2013, 25:1038.
[22] Mukherjee S, Proctor C M, Tumbleston J R, Bazan G C, Nguyen T Q, Ade H. Advanced Materials, 2015, 27:1105.
[23] Chen D, Liu F, Wang C, Nakahara A, Russell T P. Nano Letters, 2011, 11:2071.
[24] Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H. Advanced Energy Materials, 2013, 3:864.
[25] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nature Communications, 2014, 5.
[26] Ma W, Yang G, Jiang K, Carpenter J H, Wu Y, Meng X, McAfee T, Zhao J, Zhu C, Wang C, Ade H, Yan H. Advanced Energy Materials, 2015, 5:1501044.
[27] Ye L, Zhang S, Ma W, Fan B, Guo X, Huang Y, Ade H, Hou J. Advanced Materials, 2012, 24:6335.
[28] Wan Q, Guo X, Wang Z, Li W, Guo B, Ma W, Zhang M, Li Y. Adv. Funct. Mater., 2016, 26:6635.
[29] Collins B A, Li Z, Tumbleston J R, Gann E, McNeill C R, Ade H. Advanced Energy Materials, 2013, 3:65.
[30] Lin Y, Zhan X, Materials Horizons, 2014, 1:470.
[31] Bai H, Wu Y, Wang Y, Wu Y, Li R, Cheng P, Zhang M, Wang J, Ma W, Zhan X. J. Mater. Chem. A, 2015, 3:20758.
[32] Lin Y, Zhang Z G, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X. Energy Environ. Sci., 2015, 8:610.
[33] Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su C J, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. Journal of the American Chemical Society, 2016, 138:2973.
[34] Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X. Advanced Materials, 2015, 27:1170.
[35] Lin H, Chen S, Li Z, Lai J Y, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Advanced Materials, 2015, 27:7299.
[36] Wu Y, Bai H, Wang Z, Cheng P, Zhu S, Wang Y, Ma W, Zhan X. Energy Environ. Sci., 2015, 8:3215.
[37] Deshmukh K D, Qin T, Gallaher J K, Liu A C Y, Gann E, O'Donnell K, Thomsen L, Hodgkiss J M, Watkins S E, McNeill C R. Energy Environ. Sci., 2015, 8:332.
[38] Zhou Y, Kurosawa T, Ma W, Guo Y, Fang L, Vandewal K, Diao Y, Wang C, Yan Q, Reinspach J, Mei J, Appleton A L, Koleilat G I, Gao Y, Mannsfeld S C, Salleo A, Ade H, Zhao D, Bao Z. Advanced Materials, 2014, 26:3767.
[39] Hwang Y J, Courtright B A, Ferreira A S, Tolbert S H, Jenekhe S A. Advanced Materials, 2015, 27:4578.
[40] Kang H, Uddin M A, Lee C, Kim K H, Nguyen T L, Lee W, Li Y, Wang C, Woo H Y, Kim B J. Journal of the American Chemical Society, 2015, 137:2359.
[41] Mu C, Liu P, Ma W, Jiang K, Zhao J, Zhang K, Chen Z, Wei Z, Yi Y, Wang J, Yang S, Huang F, Facchetti A, Ade H, Yan H. Advanced Materials, 2014, 26:7224.
[42] Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J. Advanced Materials, 2015, 27:6046.
[43] Ameri T, Khoram P, Min J, Brabec C J. Advanced Materials, 2013, 25:4245.
[44] Cheng P, Zhan X. Materials Horizons, 2015, 2:462.
[45] Fang J, Wang Z, Zhang J, Zhang Y, Deng D, Wang Z, Lu K, Ma W, Wei Z. Advanced Science, 2015, 2.
[46] Zhang Y J, Deng D, Lu K, Zhang J, Xia B, Zhao Y, Fang J, Wei Z. Advanced materials, 2015, 27:1071.
[47] Zhang J Q, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. Journal of the American Chemical Society, 2015, 137:8176.
[1] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[2] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[3] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[4] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[5] 宋成杰, 王二静, 董兵海, 王世敏. 非富勒烯类有机小分子受体材料[J]. 化学进展, 2015, 27(12): 1754-1763.
[6] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[7] 关丽, 张晓远, 孙福强, 姜月, 钟一平, 刘平. 齐聚噻吩及其衍生物有机光伏材料[J]. 化学进展, 2015, 27(10): 1435-1447.
[8] 赖衍帮, 丁益民, 王洪宇. 苯并[1,2-b:4,5-b’]二噻吩的结构修饰及在有机光伏材料中的应用[J]. 化学进展, 2014, 26(10): 1673-1689.
[9] 胡振锟,薛敏钊,刘燕刚. 纳米色料的制备及应用[J]. 化学进展, 2006, 18(01): 66-73.