English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1578-1590 DOI: 10.7536/PC160350 前一篇   

• 综述与评论 •

选择性氧化还原脱硝催化剂

李盼盼1, 于锋1,3,4, 朱明远1, 汤常金2,5, 代斌1*, 董林2,5*   

  1. 1. 石河子大学化学化工学院 新疆兵团化工绿色过程重点实验室 石河子 832003;
    2. 南京大学化学化工学院 介观化学教育部重点实验室 南京 210093;
    3. 新疆建设兵团材料化工工程技术研究中心 石河子 832003;
    4. 材料化工新疆维吾尔自治区重点实验室 石河子 832003;
    5. 江苏省机动车尾气污染控制重点实验室 南京 210093
  • 收稿日期:2016-03-01 修回日期:2016-08-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 代斌, 董林 E-mail:db_tea@shzu.edu.cn;donglin@nju.edu.cn
  • 基金资助:
    国家高技术研究发展计划(863计划)(No.2015AA03A401),教育部长江学者与创新团队发展计划(No.IRT_15R46)和兵团科技创新团队计划(No.2015BD003)项目资助

Selective Catalytic Reduction De-NOx Catalysts

Li Panpan1, Yu Feng1,3,4, Zhu Mingyuan1, Tang Changjin2,5, Dai Bin1*, Dong Lin2,5*   

  1. 1. Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
    2. Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093;
    3. Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi 832003, China;
    4. Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi 832003, China;
    5. Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing 210093, China
  • Received:2016-03-01 Revised:2016-08-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the National High Technology Research and Development Program of China (863 program) (No. 2015AA03A401), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46) and the Program of Science and Technology Innovation Team in Bingtuan (No. 2015BD003).
氮氧化物(NOx)是烟气中的主要污染性气体之一,脱除NOx已经刻不容缓。本文综述了近年来烟气中NOx的脱除方法,分析了以钒基催化剂、铁基催化剂、分子筛催化剂为代表的高温脱硝催化剂,讨论了以贵金属催化剂、锰基催化剂、碳基催化剂为代表的低温脱硝催化剂, 阐述了不同温度下选择性催化还原(SCR)脱硝催化剂的反应机理,展望了脱硝领域的发展前景。
Nitrogen oxides (NOx) in flue gases is an important source of air pollution. It is urgent to remove the NOx from flue gases. In this review, the removal ways of nitrogen oxides are reviewed in terms of high-temperature and low-temperature selective catalytic reduction (SCR) De-NOx catalysts. We discuss the high-temperature SCR De-NOx catalysts including vanadium-based catalysts, iron-based catalysts and molecular sieve-based catalysts. Then, we highlight the low-temperature SCR De-NOx catalysts such as noble metal-based catalysts, manganese-based catalyst, carbon-based catalysts, etc. We specifically focus on the mechanism studies of SCR De-NOx catalysts. Finally, we summarize the recent advances in denitrification.

Contents
1 Introduction
2 Process arrangement of SCR denitrification
3 SCR catalysts
3.1 High-temperature catalysts
3.2 Low-temperature catalysts
4 Conclusion

中图分类号: 

()
[1] Yao X, Xiong Y, Zou W, Zhang L, Wu S, Dong X, Gao F, Deng Y, Tang C, Chen Z. Applied Catalysis B Environmental, 2014, 144(1):152.
[2] Boyano A, Iritia M C, Malpartida I, Larrubia M A, Alemany L J, Moliner R, Lázaro M J. Catal. Today, 2008, 137(2/4):222.
[3] Bosch H, Janssen F. Catalysis Today, 1988, 2(4):369.
[4] Liu C, Shi J W, Gao C, Niu C. Applied Catalysis A General, 2016, 522:54.
[5] Tang C, Zhang H, Dong L. Catalysis Science & Technology, 2015, 6(5):21.
[6] 吴忠标(Wu Z B). 大气污染控制技术(Air Pollution Contral Technology), 北京:化学工业出版社(Beijing:Chemical Industry Press), 2002.
[7] Busca G, Lietti L, Ramis G, Berti F. Applied Catalysis B Environmental, 1998, 18(18):1.
[8] Nakatsuji T, Miyamoto A. Catalysis Today, 1991, 10(1):21.
[9] Busca G, Lietti L, Ramis G, Berti F. Applied Catalysis B Environmental, 1998, 18(s 1/2):1.
[10] Bosch H. J F. Catalysis Today, 1988, 2(4):369.
[11] Koebel M, Elsener M A, Madia G. Industrial & Engineering Chemistry Research, 2001, 40(1):52.
[12] Koebel M, Madia G, Raimondi F, Wokaun A. Journal of Catalysis, 2002, 209(1):159.
[13] Koebel M, Madia G, Elsener M. Catalysis Today, 2002, 73(3/4):239.
[14] Assessment A D. Office of Scientific & Technical Information Technical Reports, (2001-10-01).. http://www.osti.gov/scitech/biblio/787755-1lb3Yz/native/
[15] Haddad E, Ralston J, Green G, Castagnero S. Proceedings of the EPA-EPRI-NETL-AWMA Combined Power Plant Air Pollutant Control Mega Symposium. 2003. 19.
[16] Chung L, Huang H S. Challenges of Power Engineering and Environment., 2006:710.
[17] Mochida I, Korai Y, Shirahama M, Kawano S, Hada T, Seo Y, Yoshikawa M, Yasutake A. Carbon, 2000, 38(2):227.
[18] Moreno-Castilla C, Carrasco-Mar?N F, López-Ramón M V, Alvarez-Merino M A. Carbon, 2001, 39(9):1415.
[19] Wang Z, Zhou J, Zhu Y, Wen Z, Liu J, Cen K. Fuel Processing Technology, 2007, 88(8):817.
[20] Wang Z, Zhou J, Jianren Fan A, Cen K. Energy & Fuels, 2006, 20(6):2432.
[21] Basfar A A, Fageeha O I, Kunnummal N, Al-Ghamdi S, Chmielewski A G, Licki J, Pawelec A, Tymiński B, Zimek Z. Fuel, 2008, 87(8/9):1446.
[22] 锺兰狄(Zhong L D). 电力科技与环保(Electric Power Technology and Environmental Protection), 2007, 23(3):1.
[23] Zhao Y, Xue F M, Shao Y. Applied Mechanics & Materials, 2013, 316/317:214.
[24] Gao X, Wu Z, Luo Z, Ni M, Cen K. Engineering Science, 2010, 8(1):27.
[25] Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A. Applied Catalysis B Environmental, 1999, 22(1):63.
[26] Choo S T, Yim S D, Nam I S, Ham S W, Lee J B. Applied Catalysis B Environmental, 2003, 44(3):237.
[27] Shen M, Li C, Wang J, Xu L, Wang W, Wang J. Rsc Advances, 2015, 5:35155.
[28] Pârvulescu V I, Boghosian S, Jung S M, Grange P. Journal of Catalysis, 2003, 217(1):172.
[29] Macleod N, Lambert R M. Catalysis Letters, 2003, 90(3/4):111.
[30] Lee K J, Kumar P A, Maqbool M S, Rao K N, Song K H, Ha H P. Applied Catalysis B Environmental, 2013, 142/143(10):705.
[31] Huang H F, Jin L L, Lu H F, Yu H, Chen Y J. Catalysis Communications, 2013, 34:1.
[32] Phil H H, Reddy M P, Kumar P A, Ju L K, Hyo J S. Applied Catalysis B Environmental, 2008, 78(s 3/4):301.
[33] Topsoe N Y. Science, 1994, 265(5176):1217.
[34] Akira Miyamoto, Kan Kobayashi, Makoto Inomata, Yuichi Murakami. Journal of Physical Chemistry, 1982, 86(15):2945.
[35] Pârvulescu V I, Grange P, Delmon B. Catalysis Today, 1998, 46(4):233.
[36] Ozkan U S, Cai Y, Kumthekar M W. Journal of Catalysis, 1994, 149(2):390.
[37] Ozkan U S, Cai Y, Kumthekar M W, Zhang L. Cheminform, 1993, 24(44):182.
[38] Inomata M, Miyamoto A, Murakami Y. Journal of Catalysis, 1980, 62(1):140.
[39] Yin X, Han H, Gunji I, Endou A, Ammal S S C, Momoji Kubo A, Miyamoto A. J. Phys. Chem. B, 1999, 103(22):4701.
[40] Davydov A A. Russian Chemical Bulletin, 1994, 43(2):214.
[41] Takagi M, Kawai T, Soma M, Onishi T, Tamaru K. Journal of Catalysis, 1977, 50(3):441.
[42] Went G T, Leu L J, Rosin R R, Bell A T. Cheminform, 1992, 134(2):492.
[43] Odriozola J A, Heinemann H, Somorjai G A, Banda J F G D L, Pereira P. Journal of Catalysis, 1989, 119(1):71.
[44] Topsoe N Y. Science, 1994, 265(5176):1217.
[45] 贺泓(He H), 刘福东(Liu F D), 余运波(Yu Y B), 单文坡(Shan W P). 中国科学:化学(Scientia Sinica China), 2012, (4):446.
[46] Brandenberger S, Kröcher O, Althoff A T, Roderik. Catalysis Reviews, 2008, 50(4):492.
[47] Kato A, Matsuda S, Kamo T, Nakajima F, Kuroda H, Narita T. Journal of Physical Chemistry, 1981, 85(26):276
[48] Foo R, Vazhnova T, Lukyanov D B, Millington P, Collier J, Rajaram R, Golunski S. Applied Catalysis B Environmental, 2015, 162:174.
[49] Liu F, Hong H, Zhang C, Shan W, Shi X. Catalysis Today, 2011, 175(1):18.
[50] Liu F, He H. Catalysis Today, 2010, 153(s 3/4):70.
[51] Mou X, Zhang B, Li Y, Yao L, Wei X, Su D S, Shen W. Angewandte Chemie International Edition, 2012, 51(12):2989.
[52] Wu S G, Yao X J, Zhang L, Cao Y, Zou W X, Li L L, Ma K L, Tang C J, Gao F, Dong L. Chemical Communications, 2015, 51(16):3470.
[53] And R Q L, Yang R T. Journal of the American Chemical Society, 1999, 121(23):5595.
[54] Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. Journal of Catalysis, 1995, 157(2):523.
[55] Larrubia M A, Ramis G, Busca G. Applied Catalysis B Environmental, 2000, 27(3):L145.
[56] Iwasaki M, Shinjoh H. Applied Catalysis A General, 2010, 390(s 1/2):71.
[57] Ellmers I, Vélez R P, Bentrup U, Schwieger W, Brückner A, Grünert W. Catalysis Today, 2015, 258:337.
[58] Qi G, Yang R T. Catalysis Letters, 2005, 100(3):243.
[59] Qi G, Yang R T. Applied Catalysis B Environmental, 2005, 60(s 1/2):13.
[60] Long R Q, Yang R T. Cheminform, 1999, 30(35):332
[61] Long R Q, Yang R T. Journal of Catalysis, 1999, 188(2):332.
[62] Delahay G, Guzmán-Vargas A, Coq B. Applied Catalysis B Environmental, 2007, 70(1):45.
[63] Krishna K, Seijger G B F, Bleek C M V D, Makkee M, Mul G, Calis H P A. Catalysis Letters, 2003, 86(1/3):121.
[64] Carja G, Delahay G, Signorile C, Coq B. Chemical Communications, 2004, 35(36):1404.
[65] Brandenberger S, Kröcher O, Casapu M, Tissler A, Althoff R. Jetp Letters, 2011, 101(3):649.
[66] Brandenberger S, Kröcher O, Tissler A, Althoff R. Applied Catalysis B:Environmental, 2010, 95(s 3/4):348.
[67] Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M. Journal of Catalysis, 2008, 256(2):312.
[68] Iwasaki M, Yamazaki K, Shinjoh H. Applied Catalysis B:Environmental, 2011, 102(s 1/2):302.
[69] Iwasaki M, Yamazaki K, Banno K, Shinjoh H. Journal of Catalysis, 2008, 260(2):205.
[70] Sun Q, Gao Z X, Chen H Y, Sachtler W M H. Journal of Catalysis, 2001, 201(1):89.
[71] Mauvezin M, Delahay G, Coq B, Kieger S, Jumas J C, Olivier-Fourcade J. Journal of Physical Chemistry B, 2001, 105(5):928.
[72] Høj M, Beier M J, Grunwaldt J D, Dahl S. Applied Catalysis B:Environmental, 2009, 93(1):166.
[73] Klukowski D, Balle P, Geiger B, Wagloehner S, Kureti S, Kimmerle B, Baiker A, Grunwaldt J D. Applied Catalysis B:Environmental, 2009, 93(1):185.
[74] Kwak J H, Tran D, Burton S D, Szanyi J, Lee J H, Peden C H F. Journal of Catalysis, 2012, 287(3):203.
[75] Fickel D W, D'Addio E, Lauterbach J A, Lobo R F. Applied Catalysis B:Environmental, 2011, 102(3/4):441.
[76] Niu C, Shi X, Liu F, Liu K, Xie L, You Y, He H. Chemical Engineering Journal, 2016, 294:254.
[77] De-La-Torre U, Pereda-Ayo B, Moliner M, González-Velasco J R, Corma A. Applied Catalysis B:Environmental, 2016, 187:419.
[78] Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. Journal of Catalysis, 2010, 275(2):187.
[79] Deka U, Lezcano-Gonzalez I, Warrender S J, Picone A L, Wright P A, Weckhuysen B M, Beale A M. Microporous & Mesoporous Materials, 2013, 166(166):144.
[80] Dong X, Wang J, Zhao H, Li Y. Catalysis Today, 2015, 258(2):325.
[81] Zhang L, Li L, Cao Y, Xiong Y, Wu S, Sun J, Tang C, Gao F, Dong L. Catalscitechnol, 2015, 5:2188.
[82] Zhang L, Li L, Cao Y, Yao X, Ge C, Gao F, Deng Y, Tang C, Dong L. Applied Catalysis B:Environmental, 2015, 165:589.
[83] Zhang T, Qu R, Su W, Li J. Applied Catalysis B Environmental, 2015, s 176/177:338.
[84] Liu Z, Su H, Li J, Li Y. Catalysis Communications, 2015, 65:51.
[85] Denton P, Giroirfendler A, Schuurman Y, Praliaud H, Mirodatos C, Primet M. Applied Catalysis A:General, 2001, 220(1/2):141.
[86] Macleod N, Lambert R M. Applied Catalysis B:Environmental, 2002, 35(4):269.
[87] Huang J, Tong Z, Yan H, Zhang J. Applied Catalysis B:Environmental, 2008, 78(3/4):309.
[88] Nikolopoulos A A, Stergioula E S, Efthimiadis E A, Vasalos I A. Catalysis Today, 1999, 54(4):439.
[89] Sawatmongkhon B, Tsolakis A, Sitshebo S, Rodríguez-Fernández J, Ahmadinejad M, Collier J, Rajaram R R. Applied Catalysis B:Environmental, 2010, 97(3/4):373.
[90] Zhang Z, Chen M, Zhi J, Shangguan W. Journal of Hazardous Materials, 2011, 193(2):330.
[91] Seker E, Yasyerli N, Gulari E, Lambert C, Hammerle R H. Applied Catalysis B:Environmental, 2002, 37(1):27.
[92] Kondratenko V A, Bentrup U, Richter M, Hansen T W, Kondratenko E V. Applied Catalysis B:Environmental, 2008, 84(3/4):497.
[93] Wang J, He H, Feng Q, Yu Y, Yoshida K. Catalysis Today, 2004, 93/95(1):783.
[94] Moreno-Tost R, Santamar?A-González J, Rodr?Guez-Castellón E, Jiménez-López A. Applied Catalysis B:Enironmental, 2004, 52(4):241.
[95] Yang X F, Wang A, Qiao B, Li J, Liu J, Zhang T. Accounts of Chemical Research, 2013, 46(8):1740.
[96] Lin J, Qiao B, Li N, Li L, Sun X, Liu J, Wang X, Zhang T. Chemical Communications, 2015, 51(37):7911.
[97] Narula C K, Allard L F, Stocks G M, Mosesdebusk M. Scientific Reports, 2014, 4:7238.
[98] Wang L, Zhang S, Zhu Y, Patlolla A, Shan J, Yoshida H, Takeda S, Frenkel A I, Tao F. ACS Catalysis, 2013, 3(5):1011.
[99] Kapteijn F, Rodriguez-Mirasol J, Moulijn J A. Applied Catalysis B:Environmental, 1996, 9(1/4):25.
[100] Thirupathi B, Smirniotis P G. Journal of Catalysis, 2014, 288(4):74.
[101] Fang D, Xie J, Hu H, Yang H, He F, Fu Z. Chemical Engineering Journal, 2015, 271:23.
[102] Tang X, Hao J, Wenguo X U, Junhua L I. Chinese Journal of Catalysis, 2006, 27(10):843.
[103] Tang X, Hao J, Xu W, Li J. Catalysis Communications, 2007, 8(3):329.
[104] Tang X, Chao W, Liang S, Cao Q, Hu B, Huang Z. Applied Catalysis B Environmental, 2011, 101(3):598.
[105] Kijlstra W S, Biervliet M, Poels E K, Bliek A. Applied Catalysis B Environmental, 1998, 16(4):327.
[106] Tang X, Hao J, Yi H, Li J. Catalysis Today, 2007, 126(126):406.
[107] Qi G, Yang R T, Chang R. Catalysis Letters, 2003, 87(1/2):67.
[108] Wu Z, Wang H, Jin R, Liu Y. Catalysis Communications, 2009, 10(6):935.
[109] Qi G, Yang R T, Chang R. Applied Catalysis B:Environmental, 2004, 51(2):93.
[110] Meng D, Zhan W, Guo Y, Guo Y, Wang L, Lu G. Acs Catalysis, 2015, 5(10):
[111] Kong Z, Wang C, Ding Z, Chen Y, Zhang Z. Catalysis Communications, 2015, 64:27.
[112] Shen K, Zhang Y, Wang X, Xu H, Sun K, Zhou C. Journal of Energy Chemistry, 2013, 22(4):617.
[113] Zhou C, Zhang Y, Wang X, Xu H, Sun K, Kai S. Journal of Colloid & Interface Science, 2013, 392(4):319.
[114] Min K, Park E D, Ji M K, Yie J E. Catalysis Today, 2006, 111(3):236.
[115] Li J, Chen J, Ke R, Luo C, Hao J. Catalysis Communications, 2007, 8(12):1896.
[116] Chen Z, Xuehui L I, Gao X, Jiang Y, Yangxiao L V, Wang F, Wang L. Chinese Journal of Catalysis, 2009, 30(1):4.
[117] Peña D A, Uphade B S, Smirniotis P G. Journal of Catalysis, 2004, 221(2):421.
[118] Kijlstra W S, Brands D S, Smit H I, Poels E K, Bliek A. Journal of Catalysis, 1997, 171(1):219.
[119] Kijlstra W S, Brands D S, Smit H I, Poels E K, Bliek A. Journal of Catalysis, 1997, 171:208.
[120] Smirniotis P G, Peña D A, Uphade B S. Angewandte Chemie International Edition, 2001, 40(13):2479.
[121] Amores J G, Escribano V S, Ramis G, Busca G. Applied Catalysis B Environmental, 1997, 13(1):45.
[122] Kapteijn F, Singoredjo L, Andreini A, Moulijn J A. Applied Catalysis B Environmental, 1994, 3(93):173.
[123] Kapteijn F, Singoredjo L, Vandriel M, Andreini A, Moulijn J A, Ramis G, Busca G. Journal of Catalysis, 1994, 150(1):105.
[124] Marbán G, Valdés-Solís T, Fuertes A B. Journal of Catalysis, 2004, 226(1):138.
[125] Marbán G, Valdés-Solís T, Fuertes A B. Physical Chemistry Chemical Physics, 2003, 2(2):453.
[126] Marbán G, Fuertes A B. Catalysis Letters, 2002, 84(1/2):13.
[127] Song W, Liu J, Zheng H, Ma S, Wei Y, Duan A, Jiang G, Zhao Z, Hensen E J M. Catalscitechnol, 2015,
[128] Gálvez M E, Lázaro M J, Moliner R. Catalysis Today, 2005, (s 102/103):142.
[129] Boyano A, Iritia M C, Malpartida I, Larrubia M A, Alemany L J, Moliner R, Lázaro M J. Catalysis Today, 2008, 137(s 2/4):222.
[130] Pei L, Li C, Zeng G, He L, Peng D, Cui H, Li S, Zhai Y. Applied Catalysis B Environmental, 2010, 96(1):157.
[131] Fan X, Qiu F, Yang H, Tian W, Hou T, Zhang X. Catalysis Communications, 2011, 12(14):1298.
[132] Li Q, Yang H, Qiu F, Zhang X. Journal of Hazardous Materials, 2011, 356:121
[133] Ma Z, Yang H, Qian L, Zheng J, Zhang X. Applied Catalysis A General, 2012, s 427/428(10):43.
[134] Yao X, Lei Z, Li L, Liu L, Yuan C, Xian D, Fei G, Yu D, Tang C, Zhuo C. Applied Catalysis B Environmental, 2014, s 150/151(11):315.
[135] Centi G, Perathoner S, Biglino D, Giamello E. Journal of Catalysis, 1995, 152(1):75.
[136] Moreno-Tost R, Castellón E R, Jiménez-López A. Journal of Molecular Catalysis A Chemical, 2006, 248(1/2):126.
[137] Chen J P, Yang R T, Buzanowski M A, Cichanowicz J E. Industrial & Engineering Chemistry Research, 2002, 29(7):1431.
[138] Zhang R, Zhong Q, Zhao W. Research on Chemical Intermediates, 41(6):3479.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[4] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[5] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[6] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[9] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[10] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[11] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[12] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[13] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[14] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[15] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
阅读次数
全文


摘要

选择性氧化还原脱硝催化剂