English
新闻公告
More
化学进展 2016, Vol. 28 Issue (9): 1299-1312 DOI: 10.7536/PC151212 前一篇   后一篇

所属专题: 锂离子电池

• 特约稿 •

含有氟代溶剂或含氟添加剂的锂离子电解液

马国强1,2, 王莉1, 张建君2, 陈慧闯2, 何向明1*, 丁元胜2   

  1. 1. 清华大学核能与新能源技术研究院 北京市精细陶瓷实验室 北京 100084;
    2. 浙江省化工研究院 杭州 310023
  • 收稿日期:2015-12-01 修回日期:2016-06-01 出版日期:2016-09-15 发布日期:2016-08-16
  • 通讯作者: 何向明 E-mail:hexm@tsinghua.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2013CB934000)、国家自然科学基金重大项目(No.U1564205)、科技部国际科技合作项目(No.2014DFG71590)、浙江省科技厅项目(No.2016F50051)和中国博士后科学基金项目(No.2016M590550)资助

Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive

Ma Guoqiang1,2, Wang Li1, Zhang Janjun2, Chen Huichuang2, He Xiangming1*, Ding Yuansheng2   

  1. 1. Beijing Key Lab of Fine Ceramics, Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. Zhejiang Chemical Industry Research Institute Co. Ltd., Hangzhou 310023, China
  • Received:2015-12-01 Revised:2016-06-01 Online:2016-09-15 Published:2016-08-16
  • Supported by:
    This work was supported by the National Basic Research Development Program of China (973 Program)(No. 2013CB934000),the Major Projects of National Natural Science Foundation of China(No. U1564205),the Natural Science Foundation of Beijing, China(No. 2014DFG71590),the Project of Science and Technology Department of Zhejiang Province(No. 2016F50051),and the Project funded by China Postdoctoral Science Foundation (No. 2016M590550).
随着大型移动设备(如新能源汽车等)、储能电站及其他便携式充电设备的日益普及,锂离子电池正逐步占领化学电源市场的主导地位。电解液是锂离子电池的重要组成部分,对电池的许多性能如输出电压、能量密度、输出功率、寿命、温度适用范围和安全性能等具有重要的影响。氟具有很强的电负性和弱极性,氟代溶剂或含氟添加剂具有低熔点、高闪点和高氧化分解电压等优点。氟代溶剂与电极材料之间的润湿性也较好,在高电压电解液、高安全性电解液、宽温度窗口电解液以及其他特殊功能电解液的开发中具有深入的研究和广泛的应用。本文综述了近年来氟代溶剂或添加剂在锂离子电池电解液中的不同应用,分析阐述了其对电池性能提升的机理,总结了以氟代碳酸乙烯酯(FEC)为代表的氟代溶剂的合成方法,最后对用于锂离子电池电解液的氟代溶剂或含氟添加剂的研发方向和发展趋势进行了展望。
With the development of large mobile equipments (such as electric vehicles), energy storage power stations and the other portable charging devices, lithium-ion battery is gradually occupying the dominant position of the chemical power market. Electrolyte is one of the most important components of lithium-ion battery, having a significant impact on many properties of lithium-ion battery, such as the output voltage, energy density, power density, longevity, temperature range, safety performance and so on. In general, owing to the very high electronegativity and low polarizability of fluorine, fluorinated organic solvent shows very different physical properties compared to the common organic solvent. Specifically, fluorinated solvent has a low melting point, high flash point, high oxidation decomposition voltage, and good wettability with the electrode material. Therefore, fluorinated solvent has a potential application in the research and development for high voltage electrolyte, high security electrolyte, wide temperature window liquid electrolyte, and the other special functional electrolyte. Here, the recent research and applications on fluorinated solvents and additives in lithium-ion battery electrolyte are reviewed. The mechanisms for the enhancement performance of lithium-ion battery electrolyte with the use of fluorinated solvents and additives are also analyzed and discussed in detail. Simultaneously, the fabrication methods of fluorinated solvents such as fluorinated ethylene carbonate (FEC) are summarized. Finally, the research prospects and problems for fluorinated solvents and additives in lithium-ion battery electrolyte are also discussed in detail.

Contents
1 Introduction
2 High-voltage electrolyte
2.1 The solvent of high-voltage electrolyte
2.2 The additive of high-voltage electrolyte
3 High security electrolyte
3.1 The nonflammable electrolyte containing flrorinated solvent
3.2 Fluorinated flame retardant additives
4 High and low temperature electrolyte
4.1 High temperature electrolyte
4.2 Low temperature electrolyte
5 The other functional electrolytes
5.1 Fluorinated solvent and additive with special function
5.2 The application of fluorinated solvent and additive in new type battery

中图分类号: 

()
[1] Marom R, Amalraj S F, Leifer N, Jacob D, Aurbach D. J. Mater. Chem., 2011, 21:9938.
[2] Fergus J W. J. Power Sources, 2010, 195:939.
[3] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135:1167.
[4] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energ. Environ. Sci., 2011, 4:3243.
[5] Quartarone E, Mustarelli P. Chem. Soc. Rev., 2011, 40:2525.
[6] Xu K. Chem. Rev., 2004, 104(10):4303.
[7] Xu K. Chem. Rev., 2014, 114:11503.
[8] 胡伟跃(Hu W Y). 中南大学博士毕业论文(Doctoral Dissertation of Center South University), 2005.
[9] Oesten R, Heider U, Schmidt M. Solid State Ionics, 2002, 148:391.
[10] Tan S, Ji Y J, Zhang Z R, Yang Y. Chem.Phys.Chem., 2014, 15:1956.
[11] Vetter J, Novák P, Wagner M R, Veit C, M ller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. J. Power Sources, 2005, 147:269.
[12] Li J, Daniel C, Wood D. J. Power Sources, 2011, 196:2452.
[13] Aravindan V, Gnanaraj J, Madhavi S, Liu H K. Chemistry, 2011, 17:14326.
[14] Xu K, Zhang S S, Lee U, Allen J L, Jow T R. J. Power Sources, 2005, 146:79.
[15] Zhang S S. J. Power Sources, 2006, 162:1379.
[16] Nakajima T. J. Fluorine Chem., 2000, 105:10.
[17] Nakajima T, Dan K, Koh M, Ion T, Shimizu T. J. Fluorine Chem., 2001, 111:8.
[18] Armand M, Tarascon J M. Nature, 2008, 451:652.
[19] Kawai H, Nagat M, Tukamoto H, West A R. J. Power Sources, 1999, 81/82:67.
[20] Hu M, Pang X, Zhou Z. J. Power Sources, 2013, 237:229.
[21] Wu F, Zhou H, Bai Y, Wang H, Wu C. ACS Appl. Mater. Interfaces, 2015, 7:15098.
[22] Shao N, Sun X G, Dai S, Jiang D E. J. Phys. Chem. B, 2011, 115:12120.
[23] 齐爱(Qi A). 中南大学硕士学位论文(Master Dissertation of Center South University), 2014.
[24] 吴贤文(Wu X W). 中南大学博士毕业论文(Doctoral Dissertation of Center South University), 2013.
[25] Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Energ. Environ. Sci., 2013, 6:1806.
[26] McMillan R, Helen S, Shu Z X, Wang W. J. Power Sources, 1999, 81:7.
[27] Chen L, Wang K, Xie X, Xie J. J. Power Sources, 2007, 174:538.
[28] Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. ACS Appl. Mater. Interfaces, 2011, 3:4165.
[29] Markevich E, Salitra G, Fridman K, Sharabi R, Gershinsky G, Garsuch A, Semrau G, Schmidt M A, Aurbach D. Langmuir, 2014, 30:7414.
[30] Hu L, Zhang Z, Amine K. Electrochem. Commun., 2013, 35:76.
[31] Ryou M H., Han G B., Lee Y M, Lee J N, Lee D J, Yoon Y O, Park J K. Electrochim. Acta, 2010, 55:2073.
[32] Liao L, Cheng X, Ma Y, Zuo P, Fang W, Yin G, Gao Y. Electrochim. Acta, 2013, 87:466.
[33] Etacheri V, Haik O, Goffer Y, Roberts G A, Stefan I C, Fasching R, Aurbach D. Langmuir, 2012, 28:965.
[34] Smart M C, Ratnakumar B V, Ryan-Mowrey V S, Surampudi S, Prakash G K S, Hu J, Cheung I. J. Power Sources, 2003, 119/121:359.
[35] Xia L, Xia Y, Wang C, Hu H, Lee S, Yu Q, Chen H, Liu Z. ChemElectroChem, 2015, 2(11):1707.
[36] Shao N, Sun X G., Dai S, Jiang D E. J. Phys. Chem. B, 2012, 116:3235.
[37] Zhu Y, Casselman M D, Li Y, Wei A, Abraham D P. J. Power Sources, 2014, 246:184.
[38] Xu M, Liu Y, Li B, Li W, Li X, Hu S. Electrochem. Commun., 2012, 18:123.
[39] Cresce A, Xu K. J. Electrochem. Soc., 2011, 158(3):A337.
[40] Xiang H F, Wang H, Chen C H, Ge X W, Guo S, Sun J H, Hu W Q. J. Power Sources, 2009, 191:575.
[41] 任春燕(Ren C Y). 中南大学硕士毕业论文(Master Dissertation of Center South University), 2012.
[42] 马玉林(Ma Y L)哈尔滨工业大学博士毕业论文(Doctoral Dissertation of Harbin Institute of Technology), 2010.
[43] Sato K I Y, Okada S, Yamaki J. Solid State Ionics, 2002, 148:4.
[44] Arai J, Katayama H, Akahoshi H. J. Electrochem. Soc., 2002, 149:A217.
[45] Ihara M, Hang B T, Sato K, Egashira M, Okada S, Yamaki J. J. Electrochem. Soc., 2003, 150:A1476.
[46] Arai J. J. Appl. Electrochem., 2002, 32:9.
[47] Satoh T, Nambu N, Takehara M, Ue M, Sasaki Y. ECS Transactions, 2013, 50(48):6.
[48] Arai J. J. Power Sources, 2003, 119/121:388.
[49] Nagasubramanian G, Orendorff C J. J. Power Sources, 2011, 196:8604.
[50] Matsuda Y, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H. J. Fluorine Chem., 2011, 132:1174.
[51] Ohmi N, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H. J. Power Sources, 2013, 221:6.
[52] Xu K, Zhang S, Allen J L, Jow T R. J. Electrochem. Soc., 2002, 149:A1079.
[53] Xu K, Ding M S, Zhang S, Allen J L, Jow T R. J. Electrochem. Soc., 2003, 150:A161.
[54] Tsujikawa T, Yabuta K, Matsushita T, Matsushima T, Hayashi K, Arakawa M. J. Power Sources, 2009, 189:429.
[55] Zhang Q, Noguchi H, Wang H, Yoshio M, Otsuki M, Ogino T. Chem. Lett., 2005, 34:1012.
[56] Amine K, Liu J, Belharouak I. Electrochem. Commun., 2005, 7:669.
[57] Zhang S S, Xu K, Jow T R. J. Power Sources, 2006, 159:702.
[58] Zhang S S, Xu K, Jow T R. J. Power Sources, 2004, 130:281.
[59] Yamakia J, Yamazaki I, Egashira M, Okada S. J. Power Sources, 2001, 102:6.
[60] Sato K, Yamazaki I, Okada S, Yamaki J. Solid State Ionics, 2002, 148:4.
[61] Sato K, Zhao L, Okada S, Yamaki J. J. Power Sources, 2011, 196:5617.
[62] Zhao L, Okada S, Yamaki J. J. Power Sources, 2013, 244:369.
[63] Plichta E J, Behl W K. J. Power Sources, 2000, 88:5.
[64] Smart M C, Ratnakumar B V, Surampudi S. J. Electrochem. Soc., 2002, 149:A361.
[65] 丁远雷(Ding Y L). 苏州大学硕士学位论文(Master Dissertation of Soochow University), 2014.
[66] 任永欢(Ren Y H). 北京理工大学博士毕业论文(Doctoral Dissertation of Beijing Institute of Technology), 2015.
[67] Smith K A, Smart M C, Prakash G K S, Ratnakumar B V. ECS Transactions, 2008, 11:91.
[68] Lu W, Xie K, Pan Y, Chen Z X, Zheng C. J. Fluorine Chem., 2013, 156:136.
[69] Lu W, Xie K, Chen Z X, Pan Y, Zheng C. J. Fluorine Chem., 2014, 161:110.
[70] Lu W, Xie K, Chen Z, Xiong S, Pan Y, Zheng C. J. Power Sources, 2015, 274:676.
[71] Aurbach D, Gamolsky K, Markovsky B, Heider U. Electrochim. Acta, 2002, 47:14.
[72] Ota H, Shima K, Ue M, Yamaki J. Electrochim. Acta, 2004, 49:565.
[73] Kawamura T, Tanaka T, Egashira M, Watanabe I, Okada S, Yamaki J. Electrochemical and Solid-State Letters, 2005, 8:A459.
[74] Sun X, Lee H S, Yang X Q, McBreen J. Electrochemical and Solid-State Letters, 2002, 5:A248.
[75] Wu S H, Huang A. J. Electrochem. Soc., 2013, 160:A684.
[76] Lee Y M, Seo J E, Choi N S, Park J K. Electrochim. Acta, 2005, 50:2843.
[77] Zhang S S, Xu K, Jow T R. J. Power Sources, 2003, 113:7.
[78] Manthiram A, Chung S H, Zu C. Adv. Mater., 2015, 27:1980.
[79] Larcher D, Tarascon J M. Nature Chem., 2015, 7:19.
[80] Lin Z, Liang C. J. Mater. Chem. A, 2014, 3:936.
[81] Nazar L F, Cuisinier M, Pang Q. Mrs Bull., 2014, 39:436.
[82] Weng W, Pol V G, Amine K. Adv. Mater., 2013, 25:1608.
[83] Azimi N, Weng W, Takoudis C, Zhang Z. Electrochem. Commun., 2013, 37:96.
[84] Jeddi K, Sarikhani K, Ghaznavi M, Zendehboodi S, Chen P. J. Solid State Electrochem., 2015, 19:1161.
[85] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1):11.
[86] Grande L, Paillard E, Hassoun J, Park J B, Lee Y J, Sun Y K, Passerini S, Scrosati B. Adv. Mater., 2015, 27:784.
[87] Zhang S S, Read J. J. Power Sources, 2011, 196:2867.
[88] Zhang S S, Xu K, Read J. J. Power Sources, 2011, 196:3906.
[89] 姚桂(Yao G),段正康(Duan Z K),贺玉平(He Y P),李立南(Li L N). 精细化工(Fine Chemicals), 2012, 29(4):394.
[90] 朱玉岚(Zhu Y L),黄险峰(Huang X F),宋国强(Song G Q). 广州化工(Guangzhou Chemistry), 2012, 40(6):97.
[91] 刘新平(Liu X P), 卢碧强(Lu B Q), 吴茂祥(Wu M X), 梅林(Mei L), CN200810071778.6,2010.3.
[92] 陈剑(Chen J), 戴晓兵(Dai X B). CN 101210005, 2006.
[93] 许国荣(Xu G R), 刘冬(Liu D), 姚双开(Yao S K). CN103113345, 2013.
[94] Akiyoshi Y. WO 2009/011225, 2009.
[95] Masafumi K, Tetsuya I, Takashi I, Takashi T, Hiroshi K, Yasushi F. J. Fluorine Chem., 2003, 120:105.
[96] Yamashita S, Fukai Y. JP2000-309583,2000.
[97] Olaf B, Dirk S. WO 2004/076439, 2004.
[98] Olaf B, Dirk S, Katja P. US 7745648, 2010.
[99] Olschimke J, Seffer D, Bomkamp M. WO 2011/036283, 2011.
[100] Woo B W, Yoon S W, Lee J H. US 7268238, 2007.
[101] Lang P, Hill M, Krossing I, Woias P, Chem. Engin. J., 2012, 179, 330.
[102] 沈雪明(Shen X M),胡昌明(Hu C M).有机化学(Chinese Journal of Organic Chemistry), 1993,13:122.
[103] Ishii H, Yamada N, Fuchigami T. Tetrahedron, 2001, 57:9067.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[4] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[12] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[13] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[14] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[15] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.