English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 993-1005 DOI: 10.7536/PC160330 前一篇   后一篇

• 综述与评论 •

氟调醇的环境污染与毒理学研究

李忠民1, 郭良宏1,2*   

  1. 1. 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085;
    2. 江汉大学 环境与健康研究院 武汉 430056
  • 收稿日期:2016-03-01 修回日期:2016-04-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 郭良宏 E-mail:lhguo@rcees.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(No.XDB14040100)和国家自然科学基金项目(No.21321004,21375143,91543203)资助

Environmental Occurrence and Toxicology of Fluorotelomer Alcohols

Li Zhongmin1, Guo Lianghong1,2*   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. Institute of Environment and Health, Jianghan University, Wuhan 430056, China
  • Received:2016-03-01 Revised:2016-04-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB14040100) and the National Natural Science Foundation of China (No.21321004,21375143,and 91543203).
多氟和全氟烷基化合物(PFASs)由于其独特的稳定性、疏水性和疏油性被广泛用于生产和生活中。PFASs的生产方式有两种:电化学氟化法(ECF)和调聚反应。由于持久性、毒性和生物富集性,ECF生产过程中产生的全氟辛烷磺酸(PFOS)及其盐和全氟辛基磺酰胺(POSF)于2009年被正式列入《斯德哥尔摩公约》的POPs名单,发达国家也开始逐渐停止用ECF方法生产PFASs。因此,调聚反应产生的PFASs前驱体氟调醇(FTOHs)的产量不断增加。研究表明,FTOHs经生物或非生物转化能够生成全氟烷基羧酸(PFCAs),可能是PFCAs污染的间接来源。此外,FTOHs的一些中间代谢产物能够与多种生物分子共价结合,引起严重的毒性效应,而代谢终产物又能引起肝毒性和肾毒性等。近年来,FTOHs的环境问题已成为环境科学、毒理学和流行病学领域的研究热点。本文综述了FTOHs的生产状况、环境污染水平和相关代谢产物的毒性。最后讨论了目前存在的问题,并对未来的研究进行了展望。
Poly- and perfluoroalkyl substances (PFASs) are a family of anthropogenic chemicals widely used in the commercial and industrial applications due to their unique properties of stability, hydrophobicity and lipophobicity. Traditionally, PFASs are produced via two major manufacturing processes: electrochemical fluorination (ECF) and telomerization. Due to their persistence, toxicity and bioaccumulation, ECF-associated chemicals perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl fluoride (POSF) are placed into the Annex B of the Stockholm Convention (SC) on Persistent Organic Pollutants (POPs) in 2009. The ECF production has also been phased out gradually in the developed countries. However, the production of fluorotelomer alcohols (FTOHs) by telomerization has increased significantly. Recent studies have demonstrated that the biotransformation and abiotic transformation of FTOHs yielded perfluocarboxylic acids (PFCAs), which may be router for the ubiquitous distribution of PFCAs. Besides, some of the FTOHs intermediate metabolites have been demonstrated to be able to covalently bind with various biomolecules and thereby cause serious toxicity, while the final metabolites are showed to cause hepatotoxicity and renal toxicity. Recently, the environmental problems related to FTOHs have become the hotspots in environmental science, toxicology and epidemiology. This paper reviews the research progress on the production status, environmental occurrence, and the toxicities of FTOHs and the related metabolites. Finally, the currently existing problems and trends are discussed.

Contents
1 Introduction
2 Production status and human exposure of FTOHs
2.1 Production status
2.2 Human exposure of PFAAs
3 Environmental occurrence of FTOHs
3.1 Basic properties
3.2 Analytical methods
3.3 Environmental occurrence
4 Toxicological studies
4.1 Biotransformation of FTOHs
4.2 Toxicities of FTOHs and the related metabolites
5 Conclusion and outlook

中图分类号: 

()
[1] Buck R C, Franklin J, Berger U, Conder J M, Cousins I T, de Voogt P, Jensen A A, Kannan K, Mabury S A, van Leeuwen S P. Integr. Environ. Assess. Manage., 2011, 7:513.
[2] Key B D, Howell R D, Criddle C S. Environ. Sci. Technol., 1997, 31:2445.
[3] Olsen G W, Burris J M, Ehresman D J, Froehlich J W, Seacat A M, Butenhoff J L, Zobel L R. Environ. Health Perspect., 2007, 115:1298.
[4] Moody C A, Martin J W, Kwan W C, Muir D C, Mabury S A. Environ. Sci. Technol., 2002, 36:545.
[5] Moody C A, Kwan W C, Martin J W, Muir D C, Mabury S A. Anal. Chem., 2001, 73:2200.
[6] Shoeib M, Harner T, Wilford B H, Jones K C, Zhu J. Environ. Sci. Technol., 2005, 39:6599.
[7] Higgins C, Field J A, Criddle C S, Luthy R G. Environ. Sci. Technol., 2005, 39:3946.
[8] Young C J, Furdui V I, Franklin J, Koerner R M, Muir D C, Mabury S A. Environ. Sci. Technol., 2007, 41:3455.
[9] Kannan K, Koistinen J, Beckman K, Evans T, Gorzelany J F, Hansen K J, Jones P D, Helle E, Nyman M, Giesy J P. Environ. Sci. Technol., 2001, 35:1593.
[10] Hansen K J, Clemen L A, Ellefson M E, Johnson H O. Environ. Sci. Technol., 2001, 35:766.
[11] Yeung L W Y, So M K, Jiang G, Taniyasu S, Yamashita K, Song M, Wu Y, Li J, Giesy J P, Guruge K S, Lam P K. Environ. Sci. Technol., 2006, 40:715.
[12] Calafat A M, Kuklenyik Z, Caudill S P, Reidy J A, Needham L L. Environ. Sci. Technol., 2006, 40:2128.
[13] Calafat A M, Wong L Y, Kuklenyik Z, Reidy J A, Needham L L. Environ. Health Perspect., 2007, 115:1596.
[14] Haug L S, Thomsen C, Becher G. Environ. Sci. Technol., 2009, 43:2131.
[15] Olsen G W, Church T R, Miller J P, Burris J M, Hansen K J, Lundberg J K, Armitage J B, Herron R M, Medhdizadehkashi Z, Nobiletti J B, O'Neill E M, Mandel J H, Zobel L R. Environ. Health Perspect., 2003, 111:1892.
[16] Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Toxicol. Sci., 2007, 99:366.
[17] Lau C, Butenhoff J L, Rogers J M. Toxicol. Appl. Pharmacol., 2004, 198:231.
[18] Knox S S, Jackson T, Javins B, Frisbee S J, Shankar A, Ducatman A M. J. Clin. Endocrinol. MeTab., 2011, 96:1747.
[19] White S S, Fenton S E, Hines E P. J. Steroid Biochem. Mol. Biol., 2011, 127:16.
[20] Zhang L, Ren X M, Guo L H. Environ. Sci. Technol., 2013, 47:11293.
[21] Mariussen E. Arch. Toxicol., 2012, 86:1349.
[22] Blum A, Balan S A, Scheringer M, Trier X, Goldenman G, Cousins I T, Diamond M, Fletcher T, Higgins C, Lindeman A E, Peaslee G, de Voogt P, Wang Z, Weber R. Environ. Health Perspect., 2015, 123:A107.
[23] Post G B, Cohn P D, Cooper K R. Environ. Res., 2012, 116:93.
[24] Fei C, McLaughlin J K, Tarone R E, Olsen J. Environ. Health Perspect., 2007, 115:1677.
[25] Nelson J W, Hatch E E, Webster T F. Environ. Health Perspect., 2010, 118:197.
[26] Halldorsson T I, Rytter D, Haug L S, Bech B H, Danielsen I, Becher G, Henriksen T B, Olsen S F. Environ. Health Perspect., 2012, 120:668.
[27] Fitz-Simon N, Fletcher T, Luster M I, Steenland K, Calafat A M, Kato K, Armstrong B. Epidemiology, 2013, 24:569.
[28] Gallo V, Leonardi G, Genser B, Lopez-Espinosa M J, Frisbee S J, Karlsson L, Ducatman A M, Fletcher T. Environ. Health Perspect., 2012, 120:655.
[29] Lopez-Espinosa M J, Mondal D, Armstrong B, Bloom M S, Fletcher T. Environ. Health Perspect., 2012, 120:1036.
[30] Lopez-Espinosa M J, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal D, Ducatman A, Leonardi G. Environ. Sci. Technol., 2011, 45:8160.
[31] Steenland K, Zhao L, Winquist A, Parks C. Environ. Health Perspect., 2013, 121:900.
[32] Barry V, Winquist A, Steenland K. Environ. Health Perspect., 2013, 121:1313.
[33] Wallington T J, Hurley M D, Xia J, Wuebbles D J, Sillman S, Ito A, Penner J E, Ellis D A, Martin J, Mabury S A, Nielsen O J, Andersen M P S. Environ. Sci. Technol., 2006, 40:924.
[34] Martin J W, Mabury S A, O'Brien P J. Chem. Biol. Interact., 2005, 155:165.
[35] Benskin J P, Phillips V, St Louis V L, Martin J W. Environ. Sci. Technol., 2011, 45:7188.
[36] Butt C M, Berger U, Bossi R, Tomy G T. Sci. Total Environ., 2010, 408:2936.
[37] Yeung L W Y, Mabury S A. Environ. Chem., 2016, 13:102.
[38] Rand A A, Mabury S A. Cell Biol. Toxicol., 2012, 28:115.
[39] Rand A A, Mabury S A. Environ. Sci. Technol., 2012, 46:7398.
[40] Rand A A, Mabury S A. Environ. Sci. Technol., 2013, 47:1655.
[41] Rand A A, Mabury S A. Environ. Sci. Technol., 2014, 48:2421.
[42] Martin J W, Chan K, Mabury S A, O'Brien P J. Chem. Biol. Interact., 2009, 177:196.
[43] D'eon J C, Mabury S A. Environ. Sci. Technol., 2011, 45:7974.
[44] Paul A G, Jones K C, Seweetman A J. Environ. Sci. Technol., 2009, 43:386.
[45] Hekster F M, Laane R W, de Voogt P. Environmental and toxicity effects of perfluoroalkylated substances. Springer:New York, 2003.
[46] Xie S, Wang T, Liu S, Jones K C, Sweetman A J, Lu Y. Environ. Int., 2013, 52:1.
[47] Stock N L, Lau F K, Ellis D A, Martin J W, Muir D C G, Mabury S A. Environ. Sci. Technol., 2004, 38:991.
[48] Ellis D A, Martin J W, Mabury S A. Environ. Sci. Technol., 2003, 37:3816.
[49] Ruan T, Sulecki L M, Wolstenholme B W, Jiang G, Wang N, Buck R C. Chemosphere, 2014, 112:34.
[50] D'eon J C, Mabury S A. Environ. Sci. Technol., 2007, 41:4799.
[51] Lee H, D'Eon J C, Mabury S A. Environ. Sci. Technol., 2010, 44:3305.
[52] Dasu K, Liu J, Lee L S. Environ. Sci. Technol., 2012, 46:3831.
[53] Gawor A, Shunthirasingham C, Hayward S J, Lei Y D, Gouin T, Mmereki B T, Masamba W, Ruepert C, Castillo L E, Shoeib M, Lee S C, Harner T, Wania F. Environ Sci Process Impacts, 2014, 16:404.
[54] Fasano W J, Carpenter S C, Gannon S A, Snow T A, Stadler J C, Kennedy G L, Buck R C, Korzeniowski S H, Hinderliter P M, Kemper R A. Toxicol. Sci., 2006, 91:341.
[55] D'Eon J C, Mabury S A. Environ. Health Perspect., 2011, 119:344.
[56] Nilsson H, Karrman A, Westberg H, Rotander A, van Bavel B, Lindstrom G. Environ. Sci. Technol., 2010, 44:2150.
[57] Paul A G, Jones K C, Sweetman A J. Environ. Sci. Technol., 2009, 43:386.
[58] de Silva A O, Mabury S A. Environ. Sci. Technol., 2006, 40:2903.
[59] Ellis D A, Martin J W, de Silva A O, Mabury S A, Hurley M D, Andersen M P S, Wallington T J. Environ. Sci. Technol., 2004, 38:3316.
[60] Beesoon S, Martin J W. Environ. Sci. Technol., 2015, 49:5722.
[61] Yuan G, Peng H, Huang C, Hu J. Environ Sci. Technol, 2016, 50:942.
[62] Ding H, Peng H, Yang M, Hu J. J Chromatogr. A, 2012, 1227:245.
[63] D'eon J C, Crozier P W, Furdui V I, Reiner E J, Libelo E L, Mabury S A. Environ. Sci. Technol., 2009, 43:4589.
[64] Bhhatarai B, Gramatica P. Environ. Sci. Technol., 2011, 45:8120.
[65] Arp H P, Niederer C, Goss K U. Environ. Sci. Technol., 2006, 40:7298.
[66] Stock N L, Ellis D A, Deleebeeck L, Muir D C G, Mabury S A. Environ. Sci. Technol., 2004, 38:1693.
[67] Krusic P J, Marchione A A, Davidson F, Kaiser M A, Kao C P C, Richardson R E, Botelho M, Waterland R L, Buck R C. J. Phys. Chem. A, 2005, 109:6232.
[68] Szostek B, Prickett K B. J. Chromatogr. B, 2004, 813:313.
[69] Szostek B, Prickett K B, Buck R C. Rapid Commun. Mass Spectrom., 2006, 20:2837.
[70] Martin J W, Muir D C, Moody C A, Ellis D A, Kwan W C, Soloman K R, Mabury S A. Anal. Chem., 2002, 74:584.
[71] Giesy J P, Kannan K. Environ. Sci. Technol., 2001, 35:1339.
[72] Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy J P. Environ. Sci. Technol., 2002, 36:3210.
[73] Wang N, Szostek B, Folsom P W, Sulecki L M, Capka V, Buck R C, Berti W R, Gannon J T. Environ. Sci. Technol., 2005, 39:531.
[74] Wang N, Szostek B, Buck R C, Folsom P W, Sulecki L M, Capka V, Berti W R, Gannon J T. Environ. Sci. Technol., 2005, 39:7515.
[75] Wang Z, Xie Z, Möller A, Mi W, Wolschke H, Ebinghaus R. Atmos. Environ., 2014, 95:207.
[76] Zhang S, Szostek B, McCausland P K, Wolstenholme B W, Lu X, Wang N, Buck R C. Environ. Sci. Technol., 2013, 47:4227.
[77] Nabb D L, Szostek B, Himmelstein M W, Mawn M P, Gargas M L, Sweeney L M, Stadler J C, Buck R C, Fasano W J. Toxicol. Sci., 2007, 100:333.
[78] Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T. Mar. Pollut. Bull., 2005, 51:658.
[79] Harada K, Nakanishi S, Sasaki K, Furuyama K, Nakayama S, Saito N, Yamakawa K, Koizumi A. Bull Environ. Contam. Toxicol, 2006, 76:306.
[80] Shoeib M, Harner T, G M W, Lee S C. Environ. Sci. Technol., 2011, 45:7999.
[81] Kim S K, Shoeib M, Kim K S, Park J E. Environ. Pollut., 2012, 162:144.
[82] Nilsson H, Karrman A, Rotander A, van Bavel B, Lindstrom G, Westberg H. Environ. Sci. Technol., 2010, 44:7717.
[83] Ericson Jogsten I, Nadal M, van Bavel B, Lindstrom G, Domingo J L. Environ. Int., 2012, 39:172.
[84] Haug L S, Huber S, Schlabach M, Becher G, Thomsen C. Environ. Sci. Technol., 2011, 45:7991.
[85] Yoo H, Washington J W, Ellington A D, Jenkins T M, Neill M P. Environ. Sci. Technol., 2010, 44:8397.
[86] Mahmoud M A, Karrman A, Oono S, Harada K H, Koizumi A. Chemosphere, 2009, 74:467.
[87] Peng H, Hu K, Zhao F, Hu J. J. Chromatogr. A, 2013, 1288:48.
[88] Ahrens L, Shoeib M, Harner T, Lee S C, Guo R, Reiner E J. Environ. Sci. Technol., 2011, 45:8098.
[89] Barber J L, Berger U, Chaemfa C, Huber S, Jahnke A, Temme C, Jones K C. J. Environ. Monit., 2007, 9:530.
[90] Iahnke A, Ahrens L, Ebinghaus R, Temme C. Environ. Sci. Technol., 2007, 41:745.
[91] Li J, Del Vento S, Schuster J, Zhang G, Chakraborty P, Kobara Y, Jones K C. Environ. Sci. Technol., 2011, 45:7241.
[92] Oono S, Harada K H, Mahmoud M A, Inoue K, Koizumi A. Chemosphere, 2008, 73:932.
[93] Shoeib M, Vlahos P, Harner T, Peters A, Graustein M, Narayan J. Atmos. Environ., 2010, 44:2887.
[94] Liu W, Takahashi S, Sakuramachi Y, Harada K H, Koizumi A. Chemosphere, 2013, 90:1672.
[95] Fraser A J, Webster T F, Watkins D J, Nelson J W, Stapleton H M, Calafat A M, Kato K, Shoeib M, Vieira V M, McClean M D. Environ. Sci. Technol., 2012, 46:1209.
[96] Langer V, Dreyer A, Ebinghaus R. Environ. Sci. Technol., 2010, 44:8075.
[97] Fasano W J, Sweeney L M, Mawn M P, Nabb D L, Szostek B, Buck R C, Gargas M L. Chem. Biol. Interact., 2009, 180:281.
[98] D'Eon J C, Mabury S A. Environ. Sci. Technol., 2007, 41:4799.
[99] Kudo N, Iwase Y, Okayachi H, Yamakawa Y, Kawashima Y. Toxicol. Sci., 2005, 86:231.
[100] Henderson W M, Smith M A. Toxicol. Sci., 2007, 95:452.
[101] Butt C M, Muir D C G, Mabury S A. Environ. Sci. Technol., 2010, 44:4973.
[102] Brandsma S H, Smithwick M, Solomon K, Small J, de Boer J, Muir D C. Chemosphere, 2011, 82:253.
[103] Dasu K, Lee L S, Turco R F, Nies L F. Chemosphere, 2013, 91:399.
[104] Butt C M, Muir D C G, Mabury S A. Environ. Toxicol. Chem., 2014, 33:243.
[105] Himmelstein M W, Serex T L, Buck R C, Weinberg J T, Mawn M P, Russell M H. Toxicology, 2012, 291:122.
[106] Vestergren R, Cousins I T. Environ. Sci. Technol., 2009, 43:5565.
[107] Ladics G S, Kennedy G L, O'Connor J, Everds N, Malley L A, Frame S R, Gannon S, Jung R, Roth T, Iwai H, Shin-Ya S. Drug Chem. Toxicol., 2008, 31:189.
[108] Ladics G, Stadler J, Makovec G T, Everds N, Buck R. Drug Chem. Toxicol., 2005, 28:135.
[109] Loveless S E, Finlay C, Everds N E, Frame S R, Gillies P J, O'Connor J C, Powley C R, Kennedy G L. Toxicology, 2006, 220:203.
[110] Green M T, Lee R, Farrar D, Hill J. Toxicol. Lett., 2003, 138:63.
[111] Lash L H, Putt D A, Desai K, Elfarra A A, Sicuri A R, Parker J C. Toxicol. Sci., 1998, 150:49.
[112] Elfarra A A, Anders M W. Biochem. Pharmacol., 1984, 33:3729.
[113] Lash L H, Qian W, Putt D A, Hueni S E, Elfarra A A, Sicuri A R, Parker J C. Toxicol. Appl. Pharmacol., 2002, 179:163.
[114] Mylchreest E, Ladics G, Munley S, Buck R, Stadler J. Drug Chem. Toxicol., 2005, 28:159.
[115] Maras M, Vanparys C, Muylle F, Robbens J, Berger U, Barber J L, Blust R, de Coen W. Environ. Health Perspect., 2006, 114:100.
[116] Ishibashi H, Ishida H, Matsuoka M, Tominaga N, Arizono K. Biol. Pharm. Bull., 2007, 30:1358.
[117] Ishibashi H, Yamauchi R, Matsuoka M, Kim J W, Hirano M, Yamaguchi A, Tominaga N, Arizono K. Chemosphere, 2008, 71:1853.
[118] Liu C, Du Y, Zhou B. Aquat. Toxicol., 2007, 85:267.
[119] Liu C, Yu L, Deng J, Lam P K S, Wu R S S, Zhou B. Aquat. Toxicol., 2009, 93:131.
[120] Liu C, Deng J, Yu L, Ramesh M, Zhou B. Aquat. Toxicol., 2010, 96:70.
[121] Benninghoff A D, Bisson W H, Koch D C, Ehresman D J, Kolluri S K, Williams D E. Toxicol. Sci., 2011, 120:42.
[122] Ren X M, Zhang Y F, Guo L H, Qin Z F, Lv Q Y, Zhang L Y. Arch. Toxicol., 2014, 15:1053.
[123] Zhang L, Ren X M, Wan B, Guo L H. Toxicol. Appl. Pharmacol., 2014, 279:275.
[124] Phillips M M, Dinglasan-Panlilio M J A, Mabury S A, Solomon K R, Sibley P K. Environ. Sci. Technol., 2007, 41:7159.
[125] Phillips M M, Dinglasan-Panlilio M J A, Mabury S A, Solomon K R, Sibley P K. Environ. Toxicol. Chem., 2010, 29:1123.
[126] Rand A A, Rooney J P, Butt C M, Meyer J N, Mabury S A. Chem. Res. Toxicol., 2014, 27:42.
[1] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[2] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[3] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[4] 雷雨洋, 李方方, 欧阳洁, 李敏杰, 郭良宏. 浙江地区抗生素残留的环境分布特征及来源分析[J]. 化学进展, 2021, 33(8): 1414-1425.
[5] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[6] 张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581.
[7] 朱本占, 沈忱, 盛治国. 膜受体介导双酚A低剂量内分泌干扰效应的分子机制[J]. 化学进展, 2019, 31(1): 167-179.
[8] 丁星, 杨祥龙, 熊中亮, 陈浩, 张礼知. 铋系光催化剂去除环境污染物[J]. 化学进展, 2017, 29(9): 1115-1126.
[9] 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9): 919-929.
[10] 向垒, 孙腾飞, 莫测辉, 李彦文, 蔡全英, 李慧. 季铵盐类化合物环境问题研究进展[J]. 化学进展, 2016, 28(5): 727-736.
[11] 王白云, 王晓玥, 王智文, 陈涛, 赵学明. 大肠杆菌氧化还原辅因子代谢工程[J]. 化学进展, 2014, 26(09): 1609-1618.
[12] 李卓娜, 周群芳, 刘稷燕, 史亚利, 蔡亚岐, 江桂斌. 多环麝香(PCMs)的环境行为及毒性效应[J]. 化学进展, 2012, 24(04): 606-615.
[13] 曲广波, 史建波, 江桂斌. 效应引导的污染物分析与识别方法[J]. 化学进展, 2011, 23(11): 2389-2398.
[14] 李厚金, 蓝文健. 天然单萜柠檬烯的微生物转化[J]. 化学进展, 2011, 23(11): 2318-2325.
[15] 阴永光, 刘景富, 江桂斌. 海洋环境中的天然溴代有机物[J]. 化学进展, 2011, 23(01): 254-260.
阅读次数
全文


摘要

氟调醇的环境污染与毒理学研究