English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 872-884 DOI: 10.7536/PC151216 前一篇   后一篇

• 综述与评论 •

基于萘二酰亚胺受体单元的n-型聚合物受体材料在光电领域的研究进展

卢梦霞, 张涛, 王文*, 凌启淡*   

  1. 福建师范大学化学与化工学院 福建省高分子材料重点实验室 福州 350007
  • 收稿日期:2015-12-01 修回日期:2016-02-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 王文, 凌启淡 E-mail:wangwen@fjnu.edu.cn;qdling@fjnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21574021, 51573026)和福建省自然科学基金项目(No.2015J01189)资助

The Research Progress on Naphthalene Diimide Based n-Type Polymer Acceptor Materials

Lu Mengxia, Zhang Tao, Wang Wen*, Ling Qidan*   

  1. Institute of Fujian Province Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
  • Received:2015-12-01 Revised:2016-02-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21574021, 51573026) and the Natural Science Foundation of Fujian Province (No.2015J01189).
近年来,n-型聚合物受体材料逐步在有机光电器件领域,尤其是全聚物太阳能电池领域,得到了广泛的研究。目前,报道较多的具有高的电荷迁移率和电子亲合性的n-型聚合物主要是基于萘二酰亚胺(NDI)的n-型聚合物受体材料,这类基于NDI的n-型聚合物材料表现出比富勒烯衍生物受体材料更好的热/机械性能及太阳光吸收,同时可以灵活的调节包括光学性能、电子结构、结晶性、溶解性和电荷传输等不同的内在特性从而提高器件的性能。本文根据聚合物结构组成的不同,归纳了近年来基于萘二酰亚胺的D-A聚合物受体材料的研究进展,详细描述了其相对应的给体材料和器件结构及后处理条件对器件性能的影响。同时,总结评述了针对基于萘二酰亚胺的D-A聚合物作为受体材料的全聚物太阳能电池器件工艺条件,最后展望了基于萘二酰亚胺的D-A聚合物应用在全聚物太阳能电池领域的发展前景。
Recently, all-polymer solar cells, in which both the donor and acceptor materials that absorb light and transport charges are semiconducting polymers, have a great potential to replace fullerene/polymer devices. The use of n-type polymers as acceptors has potential to overcome the high cost, poor thermal/photochemical stability, limited light absorption in the visible-near infrared region, and other limitations of fullerene derivatives. Among the various n-type polymers investigated as electron acceptors in all-PSCs to date, nanphthalene diimide (NDI)-based polymers with high carrier mobility and electron affinity have emerged as the most promising. Compared to fullerene derivatives, NDI-based n-type polymer acceptors exhibit better thermo/mechanical properties, light absorption and durability of the devices. The optical properties, electronic structure, crystallinity, solubility and charge transport of these materials can be easily tuned to enhance the devices performance. The greater thermal stability and mechanical strength of n-type polymers can ensure more morphologically and environmentally rugged all-polymer solar cells. In the paper, the research progress about the NDI-based D-A polymer acceptors is typically summed up according to the polymer structure. Meanwhile, the effects of corresponding donors, devices structure and post-process condition on the performances are described in detail. Finally, the all-polymer solar cells composed of NDI-based polymer acceptor and polymer donor are commented and we look forward to their development prospects in All-PSCs field.

Contents
1 Introduction
2 D-A polymers based on NDI
2.1 D-A polymers based on NDI which D unit has changed
2.2 D-A polymers based on NDI which A unit has changed
3 The devices post-processing technique
3.1 Solvent effect
3.2 The effect of D/A blend ratio on the device performance
3.3 The effect of additive on active layer morphology and device photovoltaic property
3.4 Film self-assembly aging
3.5 Invert structure of polymer solar cells
3.6 The cathode buffer layer
4 Conclusion and outlook

中图分类号: 

()
[1] Sariciftci N S, Braun D, Zhang C, Srdanov V I, Heeger A J, Stucky G, Wudl F. Appl. Phys. Lett., 1993, 62(6): 585.
[2] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H,Yan H. Nat. Commun., 2014, 5: 5293.
[3] Liao S H, Jhuo H J, Yeh P N, Cheng Y S, Li Y L, Lee Y H, Chen S A. Sci. Rep.-UK, 2014, 4: 6813.
[4] Jung J W, Jo J W, Jo W H. Adv. Mater., 2011, 23(15): 1782.
[5] Jung J W, Liu F, Russell T P, Jo W H. Energy Environ. Sci., 2012, 5(5): 6857.
[6] Li C Z, Chang C Y, Zang Y, Ju H X, Chueh C C, Liang P W, Jen A K Y. Adv. Mater., 2014, 26(36): 6262.
[7] Lee J U, Jung J W, Jo J W, Jo W H. J. Mater. Chem., 2012, 22(46): 24265.
[8] Poe A M, Della Pelle A M, Subrahmanyam A V, White W, Wantz G, Thayumanavan S. Chem. Commun., 2014, 50(22): 2913.
[9] Lin Y, Zhan X. Acc. Chem. Res., 2015. DOI:10.1021/acs.accounts.5b00363.
[10] Lin Y, Zhan X. Mater. Horiz., 2014, 1(5): 470.
[11] Yi J, Wang Y, Luo Q, Lin Y, Tan H, Wang H, Ma C Q. Chem. Commun., 2016, 52(8): 1649.
[12] Lin Y, Li Y, Zhan X. Chem. Soc. Rev., 2012, 41: 4245.
[13] Lee C, Kang H, Lee W, Kim T, Kim K H, Woo H Y, Kim B J. Adv. Mater., 2015, 27(15): 2466.
[14] Zhong Y, Trinh M T, Chen R, Purdum G E, Khlyabich P P, Sezen M, Nuckolls C. Nat. Commun., 2015, 6: 8242.
[15] Hwang Y J, Li H, Courtright B A, Subramaniyan S,Jenekhe S A. Adv. Mater., 2016, 28:124.
[16] Zhou Y, Kurosawa T,Ma W, Guo Y, Fang L,Vandewal K,Diao Y, Wang C, Yan Q, Reinspach J, Mei J, Appleton A L, Koleilat G I, Gao Y, Mannsfeld S C B, Salleo A, Ade H, Zhao D, Bao Z, Adv. Mater., 2014, 26: 3767.
[17] McNeill C R. Energy Environ. Sci., 2012, 5: 5653.
[18] Zhou N, Lin H, Lou J S, Yu X, Guo P, Manley E F, Loser S, Hartnett P, Huang H, Wasielewski M R, Chen L X, Chang R P H, Facchetti A, Marks T J. Adv. Energy Mater., 2014, 4, 1300785.
[19] Pavlopoulou E, Kim C S, Lee S S, Chen Z, Facchetti A,Toney M F, Loo Y L. Chem. Mater., 2014, 26: 5020.
[20] Yan H, Collins B A, Gann E, Wang C, Ade H, McNeill C R, ACS Nano, 2011, 6: 677.
[21] Schubert M, Collins B A, Mangold H, Howard I A,Schindler W, Vandewal K, Roland S, Behrends J, Kraffert F, Steyrleuthner R,Chen Z, Fostiropoulos K, Bittl R, Salleo A, Facchetti A, Laquai F, Ade H W, Neher D, Adv. Funct. Mater., 2014, 24: 4068.
[22] Mori D, Benten H, Okada I, Ohkita H, Ito S. Energy Environ. Sci., 2014, 7: 2939.
[23] Zhan X, Facchetti A, Barlow S, Marks T J, Ratner M A, Wasielewski M R, Marder S R. Adv. Mater., 2011, 23(2): 268.
[24] Zhao X, Zhan X. Chem. Soc. Rev., 2011, 40(7): 3728.
[25] Zhan X, Tan Z A, Domercq B, An Z, Zhang X, Barlow S, Marder S R. J. Am. Chem. Soc., 2007, 129(23): 7246.
[26] Li S, Zhang H, Zhao W, Ye L, Yao H, Yang B, Hou J. Adv. Energy Mater., 2016, 6(5): 1501991.
[27] Heeger A J. Chem. Soc. Rev., 2010, 39: 2354.
[28] Sonar P, Fong Lim JP, Chan KL. Energy Environ. Sci., 2011, 4: 1558.
[29] Jenekhe S A, Yi S. Appl. Phys. Lett., 2000, 77: 2635.
[30] Schubert M, Dolfen D, Frisch J, Roland S, Steyrleuthner R, Stiller B, Neher D. Adv. Energy Mater., 2012, 2(3): 369.
[31] Gao L, Zhang Z G, Xue L, Min J, Zhang J, Wei Z, Li Y. Adv. Mater., 2015, 28(9): 1884.
[32] Earmme T, Hwang Y J, Murari N M, Subramaniyan S, Jenekhe S A. J. Am. Chem. Soc., 2013, 135(40): 14960.
[33] Yuan M, Durban M M, Kazarinoff P D, Zeigler D F, Rice A H, Segawa Y, Luscombe C K. J. Polym. Sci. Pol. Chem., 2013, 51(19): 4061.
[34] Huang H, Zhou N, Ortiz R P, Chen Z, Loser S, Zhang S, Marks T J. Adv. Funct. Mater., 2014, 24(19): 2782.
[35] Choi J, Kim K H, Yu H, Lee C, Kang H, Song I, Kim B J. Chem. Mater., 2015, 27(15): 5230.
[36] Kang H, Uddin M A, Lee C, Kim K H, Nguyen T L, Lee W, Kim B J. J. Am. Chem. Soc., 2015, 137(6): 2359.
[37] Hwang Y J, Earmme T, Courtright B A, Eberle F N,Jenekhe S A. J. Am. Chem. Soc., 2015, 137(13): 4424.
[38] Park S, Cho J, Ko M J, Chung D S, Son H J. Macromolecules, 2015, 48(12): 3883.
[39] Hwang Y J, Ren G, Murari N M, Jenekhe S A. Macromolecules, 2012, 45(22): 9056.
[40] Chen Z, Lemke H, Albert-Seifried S, Caironi M, NielsenM M,Heeney M, Zhang W, McCulloch I, Sirringhaus H. Adv. Mater., 2010, 22: 2371.
[41] Hollinger J, Jahnke A A, Coombs N,Seferos D S. J. Am. Chem. Soc., 2010, 132: 8546.
[42] Hwang Y J, Earmme T, Subramaniyan S, Jenekhe S A. Chem. Commun., 2014, 50(74): 10801.
[43] Hwang Y J, Earmme T, Courtright B A, Eberle F N, Jenekhe S A. J. Am. Chem. Soc., 2015, 137(13): 4424.
[44] Kozycz L M, Gao D, Tilley A J, Seferos D S. J. Polym. Sci. Pol. Chem., 2014, 52(23): 3337.
[45] Dai S, Cheng P, Lin Y, Wang Y, Ma L, Ling Q, Zhan X. Polym. Chem.-UK, 2015, 6(29): 5254.
[46] Hwang Y J, Courtright B A, Ferreira A S, Tolbert S H, Jenekhe S A. Adv. Mater., 2015, 27(31): 4578.
[47] Fabiano S, Chen Z, Vahedi S, Facchetti A, Pignataro B, Loi M A. J. Mater. Chem., 2011, 21: 5891.
[48] Facchetti A. Mater. Today, 2013, 16(4): 123.
[49] Geng Y, Huang J, Tajima K, Zeng Q, Zhou E. Polymer, 2015, 63: 164.
[50] Ye L, Jiao X, Zhang H, Li S, Yao H, Ade H, Hou J. Macromolecules, 2015, 48(19): 7156.
[51] Cui C, Fan H, Guo X, Zhang M, He Y, Zhan X, Li Y. Polym. Chem., 2012, 3(1): 99.
[52] Lee C, Kang H, Lee W, Kim T, Kim K H, Woo H Y, Kim B J. Adv. Mater., 2015, 27(15), 2466.
[53] Jung J W, Jo J W, Chueh C C, Liu F, Jo W H, Russell T P, Jen A K Y. Adv. Mater., 2015, 27(21): 3310.
[54] Kim T, Kim J H, Kang T E, Lee C, Kang H, Shin M, Kim B J. Nat. Commun., 2015, 6, 8547.
[55] Liu F, Li H, Gu C,Fu H. RSC Adv., 2015, 5(13): 10072.
[56] Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem. Rev., 2015, 115 (23): 12666.
[57] Li G, Shrotriya V, Yao Y, Huang J S, Yang Y. J. Mater. Chem., 2007, 17:3126.
[58] Hoppe H, Sariciftci N S. J. Mater. Chem., 2006, 16: 45.
[59] Fabiano S, Chen Z, Vahedi S, Facchetti A, Pignataro B, Loi M A. J. Mater. Chem., 2011, 21: 5891.
[60] Earmme T, Hwang Y J, Subramaniyan S, Jenekhe S A. Adv. Mater., 2014, 26(35): 6080.
[61] Jung J W, Russell T P, Jo W H. Chem. Mater., 2015, 27(13): 4865.
[62] Zhang F, Jespersen K G,Bjorstrom C, Svensson M, Andersson M R, Sundstrom V, Magnusson K, Moons E, Yartsev A, Inganas O. Adv. Funct. Mater., 2006, 16:667.
[63] Peet J, Soci C, Coffin R C, Nguyen T Q, Mikhailovsky A, Moses D, Bazan G C. Appl. Phys. Lett., 2006, 89: 252105.
[64] Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Nat. Mater., 2007, 6(7): 497.
[65] Muhlbacher D, Scharber M, Morana M, Zhu Z G, Waller D, Gaudiana R, Brabec C. Adv. Mater., 2006, 18: 2931.
[66] Soci C, Hwang I W, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec C J, Heeger AJ. Adv. Funct. Mater., 2007, 17: 632.
[67] Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Brazan G C, Heeger A J. J. Am. Chem. Soc., 2008, 130: 3619.
[68] Yuan J, Ma W. J. Mater. Chem. A, 2015, 3(13): 7077.
[69] Yang L Y, Xu H, Tian H, Yin S G, Zhang F L. Sol. Energy Mat. Sol. C, 2010, 94: 1831.
[70] Zhao K, Ye L, Zhao W, Zhang S, Yao H, Xu B, Hou J. J. Mater. Chem. C, 2015, 3(37): 9565.
[1] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[2] 高玉荣, 马廷丽. 体异质结型聚合物太阳电池[J]. 化学进展, 2011, 23(5): 991-1013.