English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 131-148 DOI: 10.7536/PC150734 前一篇   后一篇

• 综述与评论 •

类石墨相C3N4光催化剂改性研究

徐建华1, 谈玲华1,2*, 寇波1,2, 杭祖圣1,2, 姜炜3, 郏永强1   

  1. 1. 南京工程学院材料工程学院 南京 211167;
    2. 江苏省先进结构材料与应用技术重点实验室 南京 211167;
    3. 南京理工大学国家特种超细粉体工程技术研究中心 南京 210094
  • 收稿日期:2015-07-01 修回日期:2015-08-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 谈玲华 E-mail:tanlinghua@njit.edu.cn
  • 基金资助:
    江苏省高校自然科学研究课题(No.14KJD430002),江苏省先进结构材料与应用技术重点实验室开放基金(No.ASMA201408),江苏省自然科学基金项目(No.BK20130747),南京工程学院校级科研基金项目(No.ZKJ201402),江苏省高等学校大学生实践创新训练计划项目(No.201511276013Z),以及南京工程学院大学生科技创新基金项目(No.TZ20160003,N20150207)资助

Modification of Graphtic Carbon Nitride Photocatalyst

Xu Jianhua1, Tan Linghua1,2*, Kou Bo1,2, Hang Zusheng1,2, Jiang Wei3, Jia Yongqiang1   

  1. 1. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
    2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China;
    3. National Special Superfine Power Engineering Research Center of China, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2015-07-01 Revised:2015-08-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    This work was supported by the Jiangsu Higher Education Institutions of China (No. 14KJD430002), the Jiangsu Key Laboratory Opening Project of Advanced Structural Materials and Application Technology (No. ASMA201408), the Natural Science Foundation of Jiangsu Province (No. BK20130747), the Science Foundation of Nanjing Institute of Technology (No. ZKJ201402), and the Practice and Innovation Training Program Projects of Jiangsu College (No. 201511276013Z), the Students′ Science and Technology Innovation Fund Project of Nanjing Institute of Technology (No. TZ20160003, N20150207).
半导体光催化技术不仅可以将太阳能转化为化学能,还可以直接降解和矿化有机污染物,因此其在抑制环境污染和解决能源短缺方面具有广阔的应用前景。类石墨相氮化碳(g-C3N4)具有独特的电子能带结构、优异的热稳定性以及化学稳定性,因此g-C3N4作为一种廉价的无金属光催化剂被广泛应用于光解水制氢产氧、污染物降解、光催化CO2还原、抗菌和有机官能团选择性转换等领域。然而,传统热缩聚法合成的g-C3N4光催化剂比表面积小、禁带宽度大、光生电子-空穴易于复合、光生载流子传输慢,抑制了其光催化活性。为了进一步提高g-C3N4的光催化活性,出现了多种改性方法。本文针对g-C3N4光催化剂的改性研究,综述了近年来国内外在g-C3N4光催化剂改性方面的重要研究进展,如采用模板法优化g-C3N4的纳米结构、元素掺杂及共聚合调控g-C3N4的能带结构、贵金属沉积或半导体复合提高光生载流子分离效率等。最后,本文还展望了g-C3N4光催化剂在改性方面的未来发展趋势。
Semiconductor photocatalysis not only can directly convert solar energy into chemical energy but also degrade and mineralize organic pollutants, which is considered as one of promising techniques to address the global energy and environmental problems. Due to the unique electronic band strcture, thermal and chemical stabilit,polymeric graphitic carbon nitride (g-C3N4), which is a low-cost and metal-free photocatalyst is widely applied in hydrogen evolution, water oxidation, environmental remediation, CO2-to-CO conversion, photocatalytic antibacterial, as well as originic photosynthesis. However, the g-C3N4 photocatalyst synthesized by traditional thermal polyconsendation method has small surface area and large band gap, and the photo-generated electron-hole pairs is easily to recombine, and the photon-generated carriers transfer slowly, all of these defects suppressed the photocatalytic activity severely. In order to enhance the photocatalytic activity of g-C3N4, some modification methods are utilized. This review aims at summarizing recent advances in the modification of g-C3N4 photocatalyst, including nanostructure designing, band gap engineering and promoting the separation of energy-wasteful charge recombination. At the end, the prospects for the modification of g-C3N4 photocatalyst are also discussed.

Contents
1 Introduction
2 Nanostructure designing of g-C3N4 photocatalyst
2.1 Hard templates synthesis method
2.2 Soft templates synthesis method
2.3 Template-free method
3 Band gap engineering of g-C3N4 photocatalyst
3.1 Non-metal doping
3.2 Metal doping
3.3 Copolymerization
4 g-C3N4-based compound photocatalyst
4.1 g-C3N4/carbon composites photocatalyst
4.2 g-C3N4/sulfide composites photocatalyst
4.3 g-C3N4/halide composites photocatalyst
4.4 g-C3N4/metal composites photocatalyst
4.5 g-C3N4/metal oxide composites photocatalyst
4.6 Other g-C3N4 composites photocatalyst
5 Conclusion and outlook

中图分类号: 

()
[1] Bard A J. Science, 1980, 207: 139.
[2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem. Rev., 1995, 95: 69.
[3] Chen X, Shen S, Guo L, Mao S. Chem. Rev., 2010, 110: 6503.
[4] Fujishima A, Honda K. Nature, 1972, 238: 37.
[5] Daghrir R, Drogui P, Robert D. Ind. Eng. Chem. Res., 2013, 52: 3581.
[6] Wang X, Blechert S, Antonietti M. ACS Catal., 2012, 2: 1596.
[7] Cao S, Yu J. J. Phys. Chem. Lett., 2014, 5: 2101.
[8] Zhao Z, Sun Y, Dong F. Nanoscale, 2015, 7: 15.
[9] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2008, 8: 76.
[10] Niu P, Zhang L, Liu G, Cheng H M. Adv. Funct. Mater., 2012, 22: 4763.
[11] Zhao Y, Zhao F, Wang X, Xu C, Zhang Z, Shi G, Qu L. Angew. Chem. Int. Ed., 2014, 53: 13934.
[12] Martin D J, Qiu K, ShevlinH S A, Handoko A D, Chen X, Guo Z, Tang J. Angew. Chem. Int. Ed., 2014, 53: 9240.
[13] Li X, Chen J, Wang X, Sun J, Antonietti M. J. Am. Chem. Soc., 2011, 133: 8074.
[14] Kroke E, Schwarz M, Horath-Bordon E, Kroll P, Noll B, Norman A. New J. Chem., 2002, 26: 508.
[15] Shi H, Chen G, Zhang C, Zou Z. ACS Catal., 2014, 4: 3643.
[16] Hu S W, Yang L W, Tian Y, Wei X L, Ding J W, Zhong J X, Chu P K. Appl. Catal. B: Environ., 2015, 163: 611.
[17] Jiang J, Zhu L, Zou J, Ouyang L, Zheng A, Tang H. Carbon, 2015, 87: 193.
[18] Li Y, Zhang H, Liu P, Wang D, Li Y, Zhao H. Small, 2013, 9: 3336.
[19] Chen X, Zhang J, Fu X, Antonietti M, Wang X. J. Am. Chem. Soc., 2009, 131: 11658.
[20] Dong G, Zhang L. J. Mater. Chem., 2012, 22: 1160.
[21] Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X. Nat. Commun., 2012, 3: 1139.
[22] Hong J, Xia X, Wang Y, Xu R. J. Mater. Chem., 2012, 22: 15006.
[23] Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S, Zhong J, Kang Z. Science, 2015, 347: 970.
[24] 楚增勇(Chu Z Y), 原博(Yuan B), 颜廷楠(Yan T N). 无机材料学报(Journal of Inorganic Materials), 2014, 29(8): 785.
[25] 李敏(Li M), 李海岩(Li H Y), 孙发民(Sun F M), 李洁(Li J), 张凌峰(Zhang L F), 袁忠勇(Yuan Z Y). 石油学报(石油加工)(Acta Petrolei Sinica(Petroleum Processing Section)), 2014, 30(1): 158.
[26] 齐跃红(Qi Y H), 刘利(Liu L), 梁英华(Liang Y H), 胡金山(Hu J S),崔文权(Cui W Q). 化学进展(Progress in Chemistry), 2015, 27(1): 38.
[27] Sano T, Tsutsui S, Koike K, Hirakawa T, Teramoto Y, Negishi N, Takeuchi K. J. Mater. Chem. A, 2013, 1: 6489.
[28] Zhang J, Guo F, Wang X. Adv. Funct. Mater., 2013, 23: 3008.
[29] Lin Z, Wang X. Angew. Chem. Int. Ed., 2013, 52: 1735.
[30] Zhang M, Xu J, Zong R, Zhu Y. Appl. Catal. B: Environ., 2014, 147: 229.
[31] Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M. J. Am. Chem. Soc., 2009, 131: 1680.
[32] Zhang J, Zhang M, Yang C, Wang X. Adv. Mater., 2014, 26: 4121.
[33] Zheng Y, Lin L, Ye X, Guo F, Wang X. Angew. Chem. Int. Ed., 2014, 53: 11926.
[34] Chen X, Jun Y, Takanabe K, Maeda K, Domen K, Fu X, Antonietti M, Wang X. Chem. Mater., 2009, 21: 4093.
[35] Li X, Wang X, Antonietti M. Chem. Sci., 2012, 3: 2170.
[36] Li X, Zhang J, Chen X, Fischer A, Thomas A, Antonietti M, Wang X. Chem. Mater., 2011, 23: 4344.
[37] Zheng D, Huang C, Wang X. Nanoscale, 2015, 7: 465.
[38] Jiang G, Zhou C, Xia X, Yang F, Tong D, Yu W, Liu S. Mater. Lett., 2010, 64: 2718.
[39] 鲍艳(Bao Y), 张永辉(Zhang Y H), 马建中(Ma J Z), 杨永强(Yang Y Q). 材料工程(Journal of Materials Engineering), 2015, 43(2): 103.
[40] Wang Y, Wang X, Antonietti M, Zhang Y. ChemSusChem, 2010, 3: 435.
[41] Yan H. Chem. Commun., 2012, 48: 3430.
[42] Kailasam K, Epping J D, Thomas A, Losse S, Junge H. Energy Environ. Sci., 2011, 4: 4668.
[43] Shi L, Liang L, Wang F, Liu M, Zhong S, Sun J. Catal. Commun., 2015, 59: 131.
[44] 张金水(Zhang J S), 王博(Wang B), 王心晨(Wang X C). 化学进展(Progress in Chemistry), 2014, 26(1): 19.
[45] Xu J, Wang Y, Zhu Y. Langmuir, 2013, 29: 10566.
[46] He F, Chen G, Yu Y, Zhou Y, Zheng Y, Hao S. Chem. Commun., 2015, 51: 425.
[47] Cui Y, Ding Z, Fu X, Wang X. Angew. Chem. Int. Ed., 2012, 51: 11814.
[48] Tahir M, Cao C, Mahmood N, Butt F, Mahmood A, Idrees F, Hussain S, Tanveer M, Ali Z, Aslam I. ACS Appl. Mater. Interfaces, 2013, 6: 1258.
[49] Bai X, Wang L, Zong R, Zhu Y. J. Phys. Chem. C, 2013, 117: 9952.
[50] Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q, Cheng H. J. Am. Chem. Soc., 2010, 132: 11642.
[51] Zhang J, Sun J, Maeda K, Domen K, Liu P, Antonietti M, Fu X, Wang X. Energy Environ. Sci., 2011, 4: 675.
[52] Ma X, Lu Y, Xu J, Liu Y, Zhang R, Zhu Y. J. Phys. Chem. C, 2012, 116: 23485.
[53] Stolbov S, Zuluaga S. J. Phys. Condens. Matter., 2013, 25: 85507.
[54] Zhang Y, Mori T, Ye J, Antonietti M. J. Am. Chem. Soc., 2010, 132: 6294.
[55] Yan S C, Li Z S, Zou Z G. Langmuir, 2010, 26: 3894.
[56] Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y. Chem. Commun., 2012, 48: 12017.
[57] Wang Y, Di Y, Antonietti M, Li H, Chen X, Wang X. Chem. Mater., 2010, 22: 5119.
[58] Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X. Adv. Mater., 2014, 26: 805.
[59] 阮林伟(Ruan L W), 裘灵光(Qiu L G), 朱玉俊(Zhu Y J), 卢运祥(Lu Y X). 物理化学学报(Acta Physico-Chimica Sinica), 2014, 30(1): 43.
[60] Dong G, Zhao K, Zhang L. Chem. Commun., 2012, 48: 6178.
[61] Pan H, Zhang Y, Shenoy V B, Gao H. ACS Catalysis, 2011, 1: 99.
[62] Gao H, Yan S, Wang J, Zou Z. Dalton Trans., 2014, 43: 8178.
[63] Wang X, Chen X, Thomas A, Fu X, Antonietti M. Adv. Mater., 2009, 21: 1609.
[64] Ding Z, Chen X, Antonietti M, Wang X. ChemSusChem, 2011, 4: 274.
[65] 金瑞瑞(Jin R R), 游继光(You J G), 张倩(Zhang Q), 刘丹(Liu D), 胡绍争(Hu S Z), 桂间舟(Gui J Z). 物理化学学报(Acta Physico-Chimica Sinica), 2014, 30(9): 1712.
[66] Yue B, Li Q, Wai H, Kako T, Ye J. Sci. Technol. Adv. Mater., 2011, 12: 34401.
[67] Hu S, Li F, Fan Z, Fan Z, Wang F, Zhao Y, Lv Z. Dalton Trans., 2015, 44: 1084.
[68] 张健(Zhang J), 王彦娟(Wang Y J), 胡绍争(Hu S Z). 物理化学学报(Acta Physico-Chimica Sinica), 2015, 31: 159.
[69] Wu M, Yan J M, Tang X N, Zhao M, Jiang Q. ChemSusChem, 2014, 7: 2654.
[70] Zhang G, Huang C, Wang X. Small, 2015, 11: 1215.
[71] Zhang J, Chen X, Takanbe K, Maeda K, Domen K, Epping J, Fu X, Antonietti M, Wang X. Angew. Chem. Int. Ed., 2010, 49: 441.
[72] Zhang J, Zhang M, Sun R, Wang X. Angew. Chem. Int. Ed., 2012, 124: 10292.
[73] 郑华荣(Zheng H R), 张金水(Zhang J S), 王心晨(Wang X C), 付贤智(Fu X Z). 物理化学学报(Acta Physico-Chimica Sinica), 2012, 28: 2336.
[74] Zhang G, Wang X. J. Catal., 2013, 307: 246.
[75] Zhang J, Zhang M, Lin S, Fu X, Wang X. J. Catal., 2014, 310: 24.
[76] Qin J, Wang S, Ren H, Hou Y, Wang X. Appl. Catal. B: Environ., 2015, 179: 1.
[77] Zhang M, Wang X. Energ. Environ. Sci., 2014, 7: 1902.
[78] Chen Z, Sun P, Fan B, Zhang Z, Fang X. J. Phys. Chem. C, 2014, 118: 7801.
[79] Li C, Wang S, Wang T, Wei Y, Zhang P, Gong J. Small, 2014, 10: 2782.
[80] Chen Y, Huang W, He D, Situ Y, Huang H. ACS Appl. Mater. Interfaces, 2014, 6: 14405.
[81] Duan J, Chen S, Jaroniec M, Qiao S Z. ACS Nano, 2015, 9: 931.
[82] Xu L, Huang W, Wang L, Tian Z, Hu W, Ma Y, Wang X, Pan A, Huang G. Chem. Mater., 2015, 27: 1612.
[83] Zhang G, Lan Z, Wang X. ChemCatChem, 2015, 7: 1422.
[84] Xiang Q, Yu J. J. Phys. Chem. Lett., 2013, 4: 753.
[85] Xiang Q, Yu J, Jaroniec M. J. Phys. Chem. C, 2011, 115: 7355.
[86] Xiang Q, Yu J, Jaroniec M. Chem. Soc. Rev., 2012, 41: 782.
[87] 张平(Zhang P), 莫尊理(Mo Z L), 张春(Zhang C), 韩立娟(Han L J), 李政(Li Z). 材料工程(Journal of Materials Engineering), 2015, 43(3): 72.
[88] Ong W, Tan L, Chai S, Yong S. Chem. Commun., 2015, 51: 858.
[89] Ge L, Han C. Appl. Catal. B: Environ., 2012, 117: 268.
[90] Zhang J, Zhang M, Lin L, Wang X. Angew. Chem., 2015, 127: 6395.
[91] Chen Y, Li J, Hong Z, Shen B, Lin B, Gao B. Phys. Chem. Chem. Phys., 2014, 16: 8106.
[92] Bai X, Wang L, Wang Y, Yao W, Zhu Y. Appl. Catal. B: Environ., 2014, 152: 262.
[93] Zhang J, Wang Y, Jin J, Zhang J, Lin Z, Huang F, Yu J. ACS Appl. Mater. Interfaces, 2013, 5: 10317.
[94] 孙冠华(Sun G H), 仇实(Qiu S), 郑经堂(Zheng J T). 材料工程(Journal of Materials Engineering), 2014, (4): 89.
[95] Wang S, Wang X. Appl. Catal. B: Environ., 2015, 162: 494.
[96] Yin L, Yuan Y, Cao S, Zhang Z, Xue C. RSC Adv., 2014, 4: 6127.
[97] Hou Y, Laursen A B, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I. Angew. Chem. Int. Ed., 2013, 52: 3621.
[98] Zhao H, Dong Y, Jiang P, Miao H, Wang G, Zhang J. J. Mater. Chem. A, 2015, 3: 7375.
[99] Hong J D, Wang Y S, Wang Y B, Zhang W, Xu R. ChemSusChem, 2013, 6: 263.
[100] Jiang D, Chen L, Xie J, Chen M. Dalton Trans., 2014, 43: 4878.
[101] Ye L, Liu J, Jiang Z, Peng T, Zan L. Appl. Catal. B: Environ., 2013, 142: 1.
[102] Sun Y, Zhang W, Xiong T, Zhao Z, Dong F, Wang R, Ho W. J. Colloid Interf. Sci, 2014, 418: 317.
[103] Jiang D, Chen L, Zhu J, Chen M, Shi W, Xie J. Dalton Trans., 2013, 42: 15726.
[104] Lei L, Jin H, Zhang Q, Xu J, Gao D, Fu Z. Dalton Trans., 2015, 44: 795.
[105] Fan Y, Ma W, Han D, Gan S, Dong X, Niu L. Adv. Meter., 2015, 27: 3767.
[106] Shi H, Li G, Sun H, An T, Zhao H, Wong P. Appl. Catal. B: Environ., 2014, 158: 301.
[107] Lan Y, Qian X, Zhao C, Zhang Z, Chen X, Li Z. J. Colloid Interface Sci., 2013, 395: 75.
[108] Liu L, Qi Y, Yang J, Cui W, Li X, Zhang Z. Appl. Surf. Sci., 2015, doi:10.1016/j.apsusc.2015.07.212.
[109] Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H. Appl. Catal. B: Environ., 2013, 129: 182.
[110] Di Y, Wang X, Thomas A, Antonietti M. ChemCatChem, 2010, 2: 834.
[111] Kamat P V. J. Phys. Chem. Lett., 2012, 3: 663.
[112] Lee K, Hahn R, Alomarf M, Seli E, Schmuki P. Adv. Mater., 2013, 25: 6133.
[113] Mubeen S, Lee J, Singh N, Kramer S, Stucky G D, Moskovits M. Nat. Nanotechnol., 2013, 8(4): 247.
[114] Cheng N, Tian J, Liu Q, Ge C, Qusti A H, Asiri A, Al-Youbi A O, Sun X. ACS Appl. Mater. Interfaces, 2013, 5: 6815.
[115] Bai X, Zong R, Li C, Liu D, Liu Y, Zhu Y. Appl. Catal. B: Environ., 2014, 147: 82.
[116] Shiraishi Y, Kofuji Y, Kanazawa S, Sakamoto H, Ichikawa S, Tanaka S, Hirai T. Chem. Commun., 2014, 50: 15255.
[117] Gu L, Wang J, Zou Z, Han X. J. Hazard. Mater., 2014, 268: 216.
[118] Leong K H, Monash P, Ibrahim S, Saravanan P. Sol. Energy, 2014, 101: 321.
[119] Zhao S, Chen S, Yu H, Quan X. Sep.Purif. Technol., 2012, 99: 50.
[120] Zhou X, Jin B, Li L, Peng F, Wang H, Yu H, Fang Y. J. Mater. Chem., 2012, 22: 17900.
[121] Yu J, Wang S, Low J, Xiao W. Phys. Chem. Chem. Phys., 2013, 15: 16883.
[122] Zhou J, Zhang M, Zhu Y. Phys. Chem. Chem. Phys., 2015, 17: 3647.
[123] Li Y, Wang J, Yang Y, Zhang Y, He D, An Q, Cao G. J. Hazard. Mater., 2015, 292: 79.
[124] Zang Y, Li L, Zuo Y, Lin H, Li G, Guan X. RSC Adv., 2013, 3: 13646.
[125] Huag L, Xu H, Li Y, Li H, Cheng X, Xia J, Xu Y, Cai G. Dalton Trans., 2013, 42: 8606.
[126] Aslam I, Cao C, Tanveer M, Khan W, Tahir M, Abid M, Idrees F, Butt F, Ali Z, Mahmood N. New J. Chem., 2014, 38: 5462.
[127] Chen J, Shen S, Guo P, Wang M, Wu P, Wang X, Guo L. Appl. Catal. B: Environ., 2014, 152: 335.
[128] Li F, Zhao Y, Wang Q, Wang X, Hao Y, Liu R, Zhao D. J. Hazard. Mater., 2015, 283: 371.
[129] Kumar S, T S, Kuamr B, Baruah A, Shanker V. J. Phys. Chem. C, 2013, 117: 26135.
[130] Pan C, Xu J, Wang Y, Li D, Zhu Y. Adv. Funct. Mater., 2012, 22: 1518.
[131] Kumar S, Suremdar T, Baruah A, Shanker V. J. Mater. Chem. A, 2013, 1: 5333.
[132] Zhang S, Yang Y, Guo Y, Guo W, Wang M, Guo Y, Huo M. J. Hazard. Mater., 2013, 261: 235.
[133] He Y, Cai J, Li T, Wu Y, Lin H, Zhao L, Luo M. Chem. Eng. J., 2013, 215: 721.
[134] Wang S, Ding Z, Wang X. Chem. Commun., 2015, 8: 1517.
[135] Wang S, Hou Y, Wang X. ACS Appl. Mater. Interfaces, 2015, 7: 4327.
[136] Ge L, Han C, Liu J. Appl. Catal. B: Environ., 2011, 108: 100.
[137] Wang Y, Bai X, Pan C, He J, Zhu Y. J. Mater. Chem., 2012, 22: 11568.
[138] 桂明生(Gui M S), 王鹏飞(Wang P F), 袁东(Yuan D), 杨易坤(Yang Y K). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2013, 29(10): 2057.
[139] Li M, Zhang L, Fan X, Zhou Y, Wu M, Shi J. J. Mater. Chem. A, 2015, 3: 5189.
[140] Zhang S, Li J, Zeng M, Zhao G, Xu J, Hu W, Wang X. ACS Appl. Mater. Interfaces, 2013, 5: 12735.
[141] 孙爱武(Sun A W), 陈欢(Chen H), 宋春艳(Song C Y), 江芳(Jiang F), 汪信(Wang X). 环境化学(Environmental Chemistry), 2013, 32: 748.
[142] Modisha P, Nyokong T. J. Mol. Catal. A: Chem., 2014, 381: 132.
[143] Zhu T, Song Y, Ji H, Xu Y, Song Y, Xia J, Yin S, Li Y, Xu H, Zhang Q, Li H. Chem. Eng. J., 2015, 271: 96.
[144] Xing Z, Chen Z, Zong X, Wang L. Chem. Commun., 2014, 50: 6762.
[145] He F, Chen G, Yu Y, Hao S, Zhou Y, Zheng Y. ACS Appl. Mater. Interfaces, 2014, 6: 7171.
[146] He F, Chen G, Yu Y, Zhou Y, Zheng Y, Hao S. Chem. Commun., 2015, 51: 6824.
[147] 李宪华(Li X H), 张雷刚(Zhang L G), 王雪雪(Wang X X),于清波(Yu Q B). 物理化学学报(Acta Physico-Chimica Sinica), 2015, 31(4): 764.
[148] Cao J, Zhao Y, Lin H, Xu B, Chen S. Mater. Res. Bull., 2013, 48: 3873.
[149] 刘建新(Liu J X), 王韵芳(Wang Y F), 王雅文(Wang Y W),樊彩梅(Fan C M). 物理化学学报(Acta Physico-Chimica Sinica), 2014, 30(4): 729.
[150] Zhang Y, Mao F, Yan H, Liu K, Cao H, Wu J, Xiao D. J. Mater. Chem. A, 2015, 3: 109.
[151] Dai K, Lu L, Liang C, Zhu Q, Liu Q, Geng L, He J. Dalton Trans., 2015, 44: 7903.
[152] Zhang G, Zang S, Wang X. ACS Catal., 2015, 5: 941.
[153] Yu J, Wang S, Cheng B, Lin Z, Huang F. Catal. Sci. Technol., 2013, 3: 1782.
[154] Li Y, Fang L, Jin R, Yang Y, Fang X, Xing Y, Song S. Nanoscale, 2015, 7: 758
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[7] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[8] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[9] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[10] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[11] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[12] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[13] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[14] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[15] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
阅读次数
全文


摘要

类石墨相C3N4光催化剂改性研究